

Sets

Q.No.1: Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set $A \times B$, each having at least three elements is : **JEE 2015**

- **A.** 219
- **B.** 256
- **C.** 275
- **D.** 510

Q.No.2: Let $S = \{x \in \mathbf{R} : x \ge 0 \text{ and } 2 | \sqrt{x} - 3 | + \sqrt{x} (\sqrt{x} - 6) + 6 = 0 \}.$ Then S : **JEE 2018**

- contains exactly two elements.
- **B.** contains exactly four elements.
- C. is an empty set.
- **D.** contains exactly one element.

Q.No.3: Two sets A and B are as under : $A = \{(a, b) \in \mathbb{R} \times \mathbb{R} : |a - 5| < 1 \text{ and } |b - 5| < 1\};$ $B = \{(a, b) \in \mathbb{R} \times \mathbb{R} : 4(a - 6)^2 + 9 (b - 5)^2 \le 36\}.$ Then : **JEE 2018 A.** $A \cap B = \phi$ (an empty set) **B.** neither $A \subset B$ nor $B \subset A$ **C.** $B \subset A$ **D.** $A \subset B$

Q.No.4: In a class of 140 students numbered 1 to 140, all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is: **JEE 2019**

A. 102 **B.** 42 **C.** 1 **D.** 38

Q.No.5: Let $S = \{1, 2, 3, ..., 100\}$. The number of non-empty subsets A of S such that the product of elements in A is even is: **JEE 2019**

A. $2^{100} - 1$ **B.** $2^{50} (2^{50} - 1)$ **C.** $2^{50} - 1$ **D.** $2^{50} + 1$

Q.No.6: Let *Z* be the set of integers. If $A = \left\{ x \in Z : 2^{(x+2)(x^2-5x+6)} = 1 \right\}$ and $B = \{ x \in Z : -3 < 2x - 1 < 9 \}$, then the number of subsets of the set A × B, is: JEE 2019 A. 2¹⁵ B. 2¹⁸

- **C.** 2¹²
- **D.** 2¹⁰

Q.No.7: Let A,B and C be sets such that $\phi = A \cap B \subseteq C$. Then which of the following statements is not true? **JEE 2019**

- A. $B \cap C \neq \phi$ B. If $(A - B) \subseteq C$, then $A \subseteq C$ C. $(C \cup A) \cap (C \cup B) = C$
- **D.** If $(A C) \subseteq B$, then $A \subseteq B$

Q.No.8: Let $X = \{n \in N : 1 \le n \le 50\}$. If $A = \{n \in X : n \text{ is a multiple of } 2\}$ and $B = \{n \in X : n \text{ is a multiple of } 7\}$, then the number of elements in the smallest subset of X containing both A and B is _____. JEE 2020

Q.No.10: The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is _____. **JEE 2021**

active