

Electrostatic Potential And Capacitance

Q.No.1:

A parallel-plate capacitor is charged to a potential difference V by a dc source. The capacitor is then disconnected from the source. If the distance between the plates is doubled, state with reason how the following change:

- (i) electric field between the plates
- (ii) capacitance, and
- (iii) energy stored in the capacitor

CBSE Board Paper 2010

Q.No.2:

Why should electrostatic field be zero inside a conductor?

CBSE Board Paper 2012

Q.No.3: An electric dipole of length 1 cm, which placed with its axis making an angle of 60° with uniform electric field, experience a torque of $6\sqrt{3}$ Nm. Calculate the potential energy of the dipole if it has charge ± 2 nC.

CBSE Board Paper 2014

Q.No.4: Two capacitors of unknown capacitances C_1 and C_2 are connected first in series and then in parallel across a battery of 100 V. If the energy stored in the two combinations is 0.045 J and 0.25 J respectively, determine the value of C_1 and C_2 . Also calculate the charge on each capacitor in parallel combination.

CBSE Board Paper 2015

Q.No.5: A point charge +Q is placed at point O, as shown in the figure. Is the potential difference $V_A - V_B$ positive, negative or zero?

CBSE Board Paper 2016

Q.No.6:

A hollow metal sphere of radius 10 cm is charged such that the potential on its surface is 5 V. What is the potential at the centre of the sphere?

CBSE Board Paper 2011

Q.No.7:

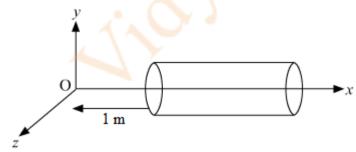
- (i) Net capacitance of three identical capacitors in series is 2 μ F. What will be their net capacitance if connected in parallel?
- (ii) Find the ratio of energy stored in the two configurations if they are both connected to the same source.

CBSE Board Paper 2011

Q.No.8:

What is the geometrical shape of equipotential surfaces due to a single isolated charge?

CBSE Board Paper 2013


Q.No.9:

A capacitor of unknown capacitance is connected across a battery of V volts. The charge stored in it is 300 μ C. When potential across the capacitor is reduced by 100 V, the charge stored in it becomes 100 μ C. Calculate The potential V and the unknown capacitance. What will be the charge stored in the capacitor if the voltage applied had increased by 100 V?

OR

A hollow cylindrical box of length 0.5 m and area of cross-section 25 cm 2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by $\vec{E} = 20x\hat{i}$, where E is NC $^{-1}$ and x is in metres. Find

- (i) Net flux through the cylinder.
- (ii) Charge enclosed by the cylinder.

CBSE Board Paper 2013

Q.No.10:

Draw a plot showing the variation of (i) electric field (E) and (ii) electric potential (V) with distance r due to a point charge Q.

CBSE Board Paper 2012