

Matrices

Q.No.1: If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying the equation $AA^{\mathsf{T}} = 9I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to: **JEE 2015 A.** (2, -1) **B.** (-2, 1) **C.** (2, 1) **D.** (-2, -1) **Q.No.2:** Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix}$ and $Q = \begin{bmatrix} q_{ij} \end{bmatrix}$ be two 3 × 3 matrices such that Q - $P^5 = I_3$. Then $\frac{q_{21}+q_{31}}{q_{32}}$ is equal to : **JEE 2019 A.** 10 **B.** 135 **C.** 15 **D.** 9

Q.No.3: If
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \cdot \dots \cdots \cdot \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$$
, then the inverse of $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is :
A. $\begin{bmatrix} 1 & 0 \\ 12 & 1 \end{bmatrix}$

B.
$$\begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$$

C. $\begin{bmatrix} 1 & -12 \\ 0 & 1 \end{bmatrix}$
D. $\begin{bmatrix} 1 & 0 \\ 13 & 1 \end{bmatrix}$

Q.No.4: The total number of matrices

$$A = egin{bmatrix} 0 & 2y & 1 \ 2x & y & -1 \ 2x & -y & 1 \end{bmatrix}$$

, $(x, y \in \mathbf{R}, x \neq y)$ for which $A^{\mathsf{T}}A = 3I_3$ is :

- **A.** 2
- **B.** 3
- **C.** 6
- **D.** 4

Q.No.5:

Let $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in R$. Suppose $Q = \begin{bmatrix} q_{ij} \end{bmatrix}$ is a matrix satisfying . JEE 2021

Q.No.6: Let M be any 3×3 matrix with entries from the set (0, 1, 2). The maximum number of such matrices, for which the sum of diagonal elements of M^TM is seven is _____. **JEE 2021**

Q.No.7:
If
$$A = \begin{bmatrix} 0 & -\tan\left(\frac{\theta}{2}\right) \\ \tan\left(\frac{\theta}{2}\right) & 0 \end{bmatrix}$$
 and $(I_2 + A)(I_2 - A)^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then 13 (a²)

Page 2 of 3

JEE 2019

Q.No.8: Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A^2 is 1, then the possible number of such matrices is : JEE 2021

- **A.** 6
- **B.** 1
- **C.** 4
- **D.** 12

Q.No.9: Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $(A^2B^2 - B^2A^2) X = 0$, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has : **JEE 2021**

- A. exactly two solutions
- **B.** infinitely many solutions
- C. no solution
- **D.** a unique solution

Q.No.10: Let $A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$, $i = \sqrt{-1}$. Then, the system of linear equations **JEE 2021**

- $A^8 \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 64 \end{bmatrix}$ has
 - A. Exactly two solutions
 - B. No solution
 - **C.** A unique solution
 - **D.** Infinitely many solutions