

Nuclei

Q.No.1: Half – lives of two radioactive elements A and B are 20 minutes and 40 minutes, respectively. Initially the samples have equal number of nuclei. After 80 minutes, the ratio of decayed numbers of A and B nuclei will be : **JEE 2016**

- **A.** 4 : 1
- **B.** 1 : 4
- **C.** 5 : 4
- **D.** 1 : 16

Q.No.2: A radioactive nucleus A with a half life T, decays into a nucleus B. At t = 0, there is no nucleus B. At sometime t, the ratio of the number of B to that of A is 0.3. Then, t is given by : **JEE 2017**

A.
$$t = \frac{1}{\log(1.3)}$$

B. $t = \frac{T}{2} \frac{\log 2}{\log 1.3}$
C. $t = T \frac{\log 1.3}{\log 2}$
D. $t = T \log (1.3)$

Q.No.3: A sample of radioactive material A, that has an activity of 10 mCi(1 Ci = 3.7×10^{14} decays/s), has twice the number of nuclei as another sample of a different radioactive material B which has an activity of 20 mCi. The correct choices for half-lives of A and B would then be respectively: **JEE 2019**

- A. 5 days and 10 days
- B. 10 days and 40 days
- C. 20 days and 5 days
- D. 20 days and 10 days

Q.No.4: At a given instant, say t = 0, two radioactive substances A and B have

equal activities. The ratio $\frac{R_B}{R_A}$ of their activities after time *t* itself decays with time *t* as e^{-3t} . If the half-life of A is ln2, the half-life of B is : **JEE 2019 A.** $4 \ln 2$ **B** $\ln 2$

B. $\frac{\ln 2}{2}$ **C.** $\frac{\ln 2}{4}$

D. $2\ln 2$

Q.No.5: Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At t = 0 it was 1600 counts per second and t = 8 seconds it was 100 counts per second. The count rate observed, as counts per second, at t = 6 seconds is close to: **JEE 2019**

- **A.** 200
- **B.** 150
- **C.** 400
- **D.** 360

Q.No.6: Consider the nuclear fission

 $Ne^{20} \rightarrow 2He^4 + C^{12}$

Given that the binding energy/ nucleon of Ne²⁰, He⁴ and C¹² are, respectively, 8.03 MeV, 7.07 MeV and 7.86 MeV, identify the correct statement: **JEE 2019**

- A. energy of 12.4 MeV will be supplied
- B. 8.3 MeV energy will be released
- **C.** energy of 3.6 MeV will be released
- D. energy of 11.9 MeV has to be supplied

Q.No.7: An X-ray tube is operated at 1.24 million volt. The shortest wavelength of the produced photon will be JEE 2021

- **A.** 10⁻³ nm
- **B.** 10⁻² nm
- **C.** 10⁻⁴ nm
- **D.** 10⁻¹ nm

Q.No.8: The de Broglie wavelength of a proton and a-particle are equal. The ratio of their velocities is JEE 2021

A. 1 : 4

B. 4 : 3 **C.** 4 : 1 **D.** 4 : 2

Q.No.9: According to Bohr atom model, in which of the following transitions will the frequency be maximum? JEE 2021

A. n = 3 to n = 2
B. n = 5 to n = 4
C. n = 4 to n = 3
D. n = 2 to n = 1

Q.No.10: Given below are two statements:

Statement I : Two photons having equal linear momenta have equal wavelengths

Statement II : If the wavelength of photon is decreased, then the momentum and energy of a photon will also decrease

In the light of the above statements, choose the correct answer from the options given below **JEE 2021**

- A. Statement I is true but Statement II is false
- B. Both Statement I and Statement II are false
- **C.** Statement I is false but Statement II is true
- **D.** Both Statement I and Statement II are true