

Relations and Functions

Q.No.1: The function f : $R \to \left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as $f(x) = \frac{x}{1+x^2}$, is : **JEE 2017**

- A. Invertible
- B. injective but not surjective
- C. surjective but not injective
- D. neither injective nor surjective

Q.No.2: For $x \in \mathbf{R} - \{0, 1\}$, left $f_1(x) = \frac{1}{x}$, $f_2(x) = 1 - x$ and $f_3(x) = \frac{1}{1-x}$ be three given functions. If a function, J(x) satisfies $(f_2 \circ J \circ f_1)(x) = f_3(x)$ then J(x) is equal to: **A.** $f_3(x)$

- **B.** $\frac{1}{r}f_{3}(x)$
- **C.** $f_2(x)$
- **D.** *f*₁(*x*)

Q.No.3: Let A = { $x \in \mathbb{R} : x$ is not a positive integer}. Define a function $f : \mathbb{A} \to \mathbb{R}$ as $f(x) = \frac{2x}{x-1}$, then f is: **JEE 2019**

- **A.** not injective
- B. neither injective nor surjective
- C. surjective but not injective
- D. injective but not surjective

Q.No.4: Let **N** be the set of natural numbers and two functions f and g be defined as $f, g: \mathbf{N} \to \mathbf{N}$ such that $f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$ and $g(n) = n - \frac{1}{2}$.

 $(-1)^n$. Then fog is:

- A. onto but not one-one.
- **B.** one-one but not onto.
- **C.** both one-one and onto.
- **D.** neither one-one nor onto.

Q.No.5: Let a function $f:(0, \infty) \to (0, \infty)$ be defined by $f(x) = \left|1 - \frac{1}{x}\right|$. Then f is : **JEE 2019**

- A. not injective but it is surjective
- B. injective only
- C. neither injective nor surjective
- **D.** both injective as well as surjective

Q.No.6: If the function *f*: **R** –{1, –1} \rightarrow A defined by $f(x) = \frac{x^2}{1-x^2}$, is surjective, then A is equal to : **JEE 2019**

- **A.** $\mathbf{R} \{-1\}$ **B.** $[0, \infty)$
- **C. R** -[-1,0)
- **D.** $\mathbf{R} (-1, 0)$

Q.No.7: Let $f(x) = x^2$, $x \in \mathbb{R}$. For any $A \subseteq \mathbb{R}$, define $g(A) = \{x \in \mathbb{R} : f(x) \in A\}$. If S = [0, 4], then which one of the following statements is not true ? **JEE 2019 A.** $g(f(S)) \neq S$ **B.** f(g(S)) = S**C.** g(f(S)) = g(S)**D.** $f(g(S)) \neq f(S)$ **Q.No.8:** Let $f(x) = \log_e(\sin x)$, $(0 < x < \pi)$ and $g(x) = \sin^{-1}(e^{-x})$, $(x \ge 0)$. If *a* is a positive real number such that $a = (f \circ g)'(a)$ and $b = (f \circ g)(a)$, then:

A. $aa^{2} + ba + a = 0$ **B.** $aa^{2} - ba - a = 1$ **C.** $aa^{2} - ba - a = 0$ **D.** $aa^{2} + ba - a = -2a^{2}$

Q.No.9: For $x \in (0, 3/2)$ let $f(x) = \sqrt{x}$, $g(x) = \tan x$ and $h(x) = \frac{1-x^2}{1+x^2}$. If $\phi(x) = ((hof)og)(x)$, then $\phi\left(\frac{\pi}{3}\right)$ is equal to : **A.** $\tan \frac{\pi}{12}$ **B.** $\tan \frac{11\pi}{12}$ **C.** $\tan \frac{7\pi}{12}$ **D.** $\tan \frac{5\pi}{12}$

Q.No.10: Let $f: R \to R$ be defined as f(x) = 2x - 1 and $g: R - \{1\} \to R$ be defined as $g\left(x\right) = \frac{x - \frac{1}{2}}{x - 1}$. Then the composition function f(g(x)) is

- neither one-one nor onto
- B. neither one-one nor onto
- C. both one-one and onto
- D. both one-one and onto