Structure of Atom

Q.No.1:

Energy of an electron is given by $E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2} \right)$. Wavelength of light

required to excite an electron in an hydrogen atom from level n=1 to n=2 will be :

$$(h = 6.62 \times 10^{-34})$$
Js and $c = 3.0 \times 10^{8} \text{ ms}^{-1})$

JEE 2013

- **A.** 1.214×10^{-7} m
- **B.** 2.816×10^{-7} m
- **C.** $6.500 \times 10^{-7} \text{ m}$
- **D.** $8.500 \times 10^{-7} \text{ m}$

Q.No.2: The correct set of four quantum numbers for the valence electrons of rubidium atom (Z = 37) is

- **A.** 5, 1, 1, + $\frac{1}{2}$
- **B.** 5, 0, 1, + $\frac{1}{2}$
- **C.** 5, 0, 0, + $\frac{1}{2}$
- **D.** 5, 1, 0, $+\frac{1}{2}$

Q.No.3: Which of the following is the energy of a possible excited state of hydrogen?

JEE 2015

- **A.** +13.6 eV
- **B.** −6.8 eV
- **C.** -3.4 eV
- **D.** +6.8 eV

Q.No.4: A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference V esu. If e and m are charge and mass of an electron, respectively, then the value of $\frac{h}{\lambda}$ (where λ is wavelength associated with electron wave) is given by:

- **A.** 2 meV
- B. \sqrt{meV}
- C. $\sqrt{2meV}$
- **D.** meV

Q.No.5: For emission line of atomic hydrogen from $n_i = 8$ to $n_i = n$, the plot of wave number (\bar{v}) against $\left(\frac{1}{n^2}\right)$ will be (The Rydberg constant, R_H is in wave number unit)

- **A.** Linear with intercept R_H
- B. Non linear
- C. Linear with slope R_H
- **D.** Linear with slope R_H

Q.No.6: Which of the following combination of statements is true regarding the interpretation of the atomic orbitals?

- (a) An electron in an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum.
- (b) For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number.
- (c) According to wave mechanics, the ground state angular momentum is equal to $\frac{h}{2\pi}.$
- (d) The plot of Ψ Vs r for various azimuthal quantum numbers, shows peak shifting towards higher r value. **JEE 2019**
 - **A.** (a), (d)
 - **B.** (a), (b)
 - **C.** (a), (c)
 - **D.** (b), (c)

Q.No.7: Which of the graphs shown below does not represent the relationship between incident light and the electron ejected from metal surface? **JEE 2019**

Q.No.8: The ground state energy of hydrogen atom is – 13.6 eV. The energy of second excited state of He⁺ ion in eV is:

JEE 2019

- **A.** 54.4
- **B.** 3.4
- **C.** 6.04
- **D.** 27.2

Q.No.9: The de Broglie wavelength (λ) associated with a photoelectron varies with the frequency (ν) of the incident radiation as, [ν_0 is threshold frequency]:

- **B.** $\lambda \propto rac{1}{\left(v-v_0
 ight)^{rac{1}{4}}}$
- C. $\lambda \propto \frac{1}{(v-v_0)^{\frac{3}{2}}}$
- **D.** $\lambda \propto rac{1}{\left(v-v_0
 ight)^{rac{1}{2}}}$

Q.No.10: Heat treatment of muscular pain involves radiation of wavelength of about 900 nm. Which spectral line of H-atom is suitable for this purpose? $[R_{\rm H}=1\times10^5~{\rm cm}^{-1},\,h=6.6\times10^{-34}~{\rm Js},\,c=3\times10^8~{\rm ms}^{-1}]$ **JEE 2019**

- **A.** Paschen, $\infty \rightarrow 3$
- **B.** Paschen, $5 \rightarrow 3$
- **C.** Balmer, $\infty \rightarrow 2$
- **D.** Lyman, $\infty \to 1$