

Coordination Compounds

Q.No.1:

Which of the following complex species is not expected to exhibit optical isomerism?

JEE 2013

- **A.** $[Co(en)_3]^{3+}$
- **B.** [Co(en)₂ Cl₂]⁺
- **C.** $[Co(NH_3)_3 Cl_3]$
- **D.** [Co(en)(NH₃)₂ Cl₂]⁺

Q.No.2: The octahedral complex of a metal iron M^{3+} with four monodentate ligands L_1 , L_2 , L_3 and L_4 absorbs wavelengths in the region of red, green, yellow and blue, respectively. The increasing order of ligand strength of the four ligands is

- **A.** $L_3 < L_2 < L_4 < L_1$
- **B.** $L_1 < L_2 < L_4 < L_3$
- **C.** $L_4 < L_3 < L_2 < L_1$
- **D.** $L_1 < L_3 < L_2 < L_4$

Q.No.3: The number of geometric isomers that can exist for square planar [Pt (Cl) (py) (NH₃) (NH₂OH)]⁺ is (py = pyridine) : **JEE 2015**

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 6

Q.No.4: The color of KMnO₄ is due to:

JEE 2015

- **A.** $M \rightarrow L$ charge transfer transition
- **B.** $d \rightarrow d$ transition
- **C.** $L \rightarrow M$ charge transfer transition
- **D.** $\sigma \sigma^*$ transition

Q.No.5: Which of the following compounds is **not** colored yellow? **JEE 2015**

- **A.** $Zn_2[Fe(CN)_6]$
- **B.** $K_3[Co(NO_2)_6]$
- **C.** $(NH_4)_3$ [As $(Mo_3 O_{10})_4$]
- **D.** BaCrO₄

Q.No.6: The pair having the same magnetic moment is : [At.No.: Cr = 24, Mn = 25, Fe = 26, Co = 27**JEE 2016**

- **A.** $[Cr(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{2+}$
- **B.** $[Mn(H_2O)_6]^{2+}$ and $[Cr(H_2O)_6]^{2+}$
- **C.** $[CoCl_4]^{2-}$ and $[Fe(H_2O)_6]^{2+}$
- **D.** $[Cr(H_2O)_6]^{2+}$ and $[CoCl_4]^{2-}$

Q.No.7: Which one of the following complexes shows optical isomerism?

JEE 2016

- A. cis [Co(en)₂Cl₂]Cl
- **B.** trans [Co(en)₂Cl₂]Cl
- **C.** [Co(NH₃)₄Cl₂]Cl
- **D.** $[Co(NH_3)_3Cl_3]$

Q.No.8: Consider the following reaction and statements:

$$\left[\mathrm{Co}\left(\mathrm{NH}_{3}
ight)_{4}\mathrm{Br}_{2}
ight]^{+}+\mathrm{Br}^{-}
ightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}
ight)_{3}\mathrm{Br}_{3}
ight]+\mathrm{NH}_{3}$$

- (I) Two isomers are produced if the reactant complex ion is a cis-isomer.
- (II) Two isomers are produced if the reactant complex ion is a *trans*-isomer.
- (III) Only one isomer is produced if the reactant complex ion is a trans-isomer.
- (IV) Only one isomer is produced if the reactant complex ion is a cis-isomer. The correct statements are:

JEE 2018

- A. (III) and (IV)
- **B.** (II) and (IV)

- **C.** (I) and (II)
- **D.** (I) and (III)

Q.No.9: Two complexes $[Cr(H_2O)_6]Cl_3$ (A) and $[Cr(NH_3)_6]Cl_3$ (B) are violet and yellow coloured, respectively. The incorrect statement regarding them is:

JEE 2019

- **A.** Δ_0 values (A) and (B) are calculated from the energies of violet and yellow light, respectively.
- **B.** both absorb energies corresponding to their complementary colors.
- **C.** both are paramagnetic with three unpaired electrons.
- **D.** Δ_0 value for (A) is less than that of (B).

Q.No.10: The highest value of the calculated spin-only magnetic moment (in BM) among all the transition metal complexes is:

JEE 2019

- **A.** 5.92
- **B.** 6.93
- **C.** 3.87
- **D.** 4.90