

Electrochemistry

Q.No.1: The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is

- A. Cu
- B. Cr
- C. Ag
- **D.** Ca

Q.No.2: Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.4 S m⁻¹. The resistance of 0.5 M solution of the same electrolyte is 280 Ω . The molar conductivity of 0.5 M solution of the electrolyte in S m² mol⁻¹ is

- **A.** 5×10^3
- **B.** 5×10^2
- **C.** 5×10^{-4}
- **D.** 5×10^{-3}

Q.No.3:

Given below are half - cell reactions.

$$Mn^{2+} + 2e^{-} \rightarrow Mn$$
; $E^{0} = -1.18 \text{ V}$

$$2(Mn^{3+} + e^{-} \rightarrow Mn^{2+})$$
; $E^{0} = + 1.51 \text{ V}$

The E^o for $3Mn^{2+} \rightarrow Mn + 2Mn^{3+}$ will be

- **A.** -0.33 V; the reaction will not occur
- **B.** -0.33 V; the reaction will occur
- C. −2.69 V ; the reaction will not occur
- **D.** −2.69 V; the reaction will occur

Q.No.4: The equivalent conductance of NaCl at concentration C and at infinite

dilution are λ_C and λ_∞ , respectively. The correct relationship between λ_C and λ_∞ is (where the constant B is positive)

A.
$$\lambda_{\mathrm{C}} = \lambda_{\infty} - (\mathrm{B})\sqrt{\mathrm{C}}$$

B.
$$\lambda_{\mathrm{C}} = \lambda_{\infty} + (\mathrm{B})\sqrt{\mathrm{C}}$$

C.
$$\lambda_{\rm C} = \lambda_{\infty} + ({\rm B}){\rm C}$$

D.
$$\lambda_{\mathrm{C}} = \lambda_{\infty} - (\mathrm{B})\mathrm{C}$$

Q.No.5: How long (approximate) should water be electrolysed by passing through 100 amperes current so that the oxygen released can completely burn 27.66 g of diborane?

(Atomic weight of B = 10.8 u)

JEE 2018

- **A.** 3.2 hours
- **B.** 1.6 hours
- **C.** 6.4 hours
- **D.** 0.8 hours

Q.No.6: The anodic half-cell of lead-acid battery is recharged using electricity of 0.05 Faraday. The amount of PbSO₄ electrolyzed in g during the process is: (Molar mass of PbSO₄ = 303 g mol^{-1})

JEE 2019

- **A.** 22.8
- **B.** 15.2
- **C.** 7.6
- **D.** 11.4

Q.No.7: If the standard electrode potential for a cell is 2 V at 300 K, the equilibrium constant (K) for the reaction

$$\overset{\cdot}{\operatorname{Zn}}\left(\mathrm{s}\right) +\operatorname{Cu}^{2+}\left(\mathrm{aq}\right) \overset{\cdot}{\rightleftharpoons}\overset{\cdot}{\operatorname{Zn}^{2+}}\left(\mathrm{aq}\right) +\operatorname{Cu}\left(\mathrm{s}\right)$$

at 300 K is approximately

$$(R = 8 JK^{-1}mol^{-1}, F = 96000 C mol^{-1})$$

JEE 2019

- **A.** e^{-80}
- **B.** e^{-160}
- **C.** e^{320}
- **D.** e^{160}

Q.No.8: Consider the following reduction processes:

$$Zn^{2+} + 2e^{-} \rightarrow Zn(s); E^{0} = -0.76 \text{ V}$$

$$Ca^{2+} + 2e^{-} \rightarrow Ca(s); E^{0} = -2.87 \text{ V}$$

$$Mg^{2+} + 2e^{-} \rightarrow Mg(s); E^{0} = -2.36 V$$

$$Ni^{2+} + 2e^{-} \rightarrow Ni(s); E^{0} = -0.25 \text{ V}$$

The reducing power of the metals increases in the order:

JEE 2019

A.
$$Ca < Zn < Mg < Ni$$

B.
$$Ni < Zn < Mg < Ca$$

D.
$$Ca < Mg < Zn < Ni$$

Q.No.9: In the cell $Pt(s)|H_2(g, 1bar)|HCl(aq)|AgCl(s)|Ag(s)|Pt(s)$ the cell potential is 0.92 V when a 10^{-6} molal HCl solution is used. The standard electrode potential of $(AgCl/Ag, Cl^-)$ electrode is :

$$\left\{ \mathrm{Given}, \; rac{2.303\,\mathrm{RT}}{\mathrm{F}} = 0.06\;\mathrm{V} \; \mathrm{at} \; 298\;\mathrm{K}
ight\}$$

JEE 2019

- **A.** 0.94 V
- **B.** 0.76 V
- **C.** 0.40 V
- **D.** 0.20 V
- **Q.No.10:** For the cell $Zn(s)|Zn^{2+}$ (aq)||M^{x+} (aq)|M(s), different half cells and their standard electrode potentials are given below:

$M^{x+}(aq)/M(s)$	Au ³⁺ (aq)/Au(s)	Ag ⁺ (aq)/Ag(s)	Fe ³⁺ (aq)/Fe ²⁺ (aq)	Fe ²⁺ (aq)/Fe(s)
$E^{\circ}{}_{\mathrm{M}^{x+}/\mathrm{M}}/\mathrm{(V)}$	1.40	0.80	0.77	-0.44

If $E^{\circ}_{\mathrm{Zn^{2+}/Zn}} = -0.76\mathrm{V}$, which cathode will give a maximum value of $E^{\circ}_{\mathrm{cell}}$ per electron transferred?

- **A.** Aq⁺/Aq
- **B.** Fe^{3+}/Fe^{2+}
- $C. Au^{3+}/Au$
- **D.** Fe²⁺/Fe