

Trigonometric Functions

Q.No.1: Two poles standing on a horizontal ground are of heights 5 m and 10 m respectively. The line joining their tops makes an angle of 15° with the ground. Then the distance (in m) between the poles, is : **JEE 2019**

A.
$$5(2+\sqrt{3})$$

B. $5(\sqrt{3}+1)$
C. $\frac{5}{2}(2+\sqrt{3})$
D. $10(\sqrt{3}-1)$

Q.No.2:

The expression $\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A}$ can be written as :

JEE 2013

- **A.** sinA cosA + 1
- **B.** secA cosecA + 1
- **C.** tanA + cotA
- **D.** secA + cosecA

Q.No.3: If the angles of elevation of the top of a tower from three collinear points A, B and C, on a line leading to the foot of the tower, are 30°, 45° and 60° respectively, then the ratio AB : BC is : **JEE 2015**

A.
$$\sqrt{3}$$
: 1
B. $\sqrt{3}$: $\sqrt{2}$
C. 1 : $\sqrt{3}$
D. 2 : 3

Q.No.4: If $0 \le x < 2\pi$, then the number of real values of x, which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$, is : **JEE 2016**

- **A.** 5
- **B.** 7
- **C.** 9
- **D.** 3

Q.No.5: A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point *A* on the path, he observes that the angle of elevation of the top of the pillar is 30°. After walking for 10 minutes from *A* in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 60°. Then the time taken (in minutes) by him, from *B* to reach the pillar, is : **JEE 2016**

- **A.** 10
- **B.** 20
- **C.** 5
- **D.** 6

Q.No.6: If $5(\tan^2 x - \cos^2 x) = 2\cos^2 x + 9$, then the value of $\cos^4 x$ is :

JEE 2017

Q.No.7: If sum of all the solutions of the equation 8 $\cos x \cdot \left(\cos\left(\frac{\pi}{6} + x\right) \cdot \cos\left(\frac{\pi}{6} - x\right) - \frac{1}{2}\right) = 1$ in $[0, \pi]$ is $k\pi$, then k is equal to : **A.** $\frac{8}{9}$ **B.** $\frac{20}{9}$ **C.** $\frac{2}{3}$ **D.** $\frac{13}{9}$

Q.No.8: PQR is a triangular park with PQ = PR = 200 m. A T.V. tower stands at the mid-point of QR. If the angles of elevation of the top of the tower at P, Q and R are respectively 45°, 30° and 30°, then the height of the tower (in m) is **JEE 2018**

- **A.** $100\sqrt{3}$
- **B.** $50\sqrt{2}$
- **C.** 100
- **D.** 50

Q.No.9: For any $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, the expression $3(\sin\theta - \cos\theta)^4 + 6(\sin\theta + \cos\theta)^2$ + $4\sin^6\theta$ equals: **JEE 2019**

- **A.** 13 4 $\cos^2\theta$ + $6\sin^2\theta\cos^2\theta$
- **B.** 13 4 $\cos^6 \theta$
- **C.** 13 4 $\cos^2\theta$ + $6\cos^4\theta$
- **D.** 13 4 $\cos^4\theta$ + 2sin² θ cos² θ

Q.No.10: If $0 \le x < \frac{\pi}{2}$, then the number of values of *x* for which sin *x* – sin 2*x* + sin 3*x* = 0, is: **JEE 2019 A.** 3 **B.** 1 **C.** 4 **D.** 2