Alcohols, Phenols and Ethers #### **Q.No.1:** Phenol is heated with a solution of mixture of KBr and KBrO₃. The major product obtained in the above reaction is **AIEEE 2011** - **A.** 3-Bromophenol - B. 4-Bromophenol - C. 2, 4, 6- Tribromophenol - **D.** 2-Bromophenol #### Q.No.2: An unknown alcohol is treated with the "Lucas reagent" to determine whether the alcohol is primary, secondary or tertiary. Which alcohol reacts fastest and by what mechanism: **JEE 2013** - A. secondary alcohol by S_N1 - **B.** tertiary alcohol by S_N1 - C. secondary alcohol by S_N2 - \mathbf{D} . tertiary alcohol by S_N2 #### Q.No.3: The product of the reaction given below is: **JEE 2016** **Q.No.4:** Which of the following, upon treatment with tert-BuONa followed by addition of bromine water, fails to decolourize the colour of bromine **JEE 2017** C. D. **Q.No.5:** The correct sequence of reagents for the following conversion will be : - **A.** CH_3MgBr , H^+/CH_3OH , $[Ag(NH_3)_2]^+OH^-$ - **B.** CH_3MgBr , $[Ag(NH_3)_2]^+OH^-$, H^+/CH_3OH - **C.** $[Ag(NH_3)_2]^+OH^-$, CH_3MgBr , H^+/CH_3OH - \mathbf{D} [Ag(NH₃)₂]⁺OH⁻, H⁺/CH₃OH, CH₃MgBr **Q.No.6:** Phenol reacts with methyl chloroformate in the presence of NaOH to form product A. A reacts with Br_2 to form product B. A and B are respectively: **JEE 2018** #### Q.No.7: The major product formed in the following reaction is: **Q.No.8:** Phenol on treatment with CO_2 in the presence of NaOH followed by acidification produces compound X as the major product. X on treatment with $(CH_3CO)_2O$ in the presence of catalytic amount of H_2SO_4 produces: **JEE 2018** CO₂H $$CO_2H$$ $$CO_2H$$ $$CH_3$$ ### D. ## Q.No.9: The major product of the following reaction is: ### A. ## **JEE 2019** C. D. **Q.No.10:** The products formed in the reaction of cumene with O_2 followed by treatment with dil. HCl are: **JEE 2019** A. C. D. OH OH OH CH3 and $$H_3C$$