

Straight Lines

Q.No.1: The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices (0, 0), (0, 41) and (41, 0), is: **JEE 2015**

- **A.** 901
- **B.** 861
- **C.** 820
- **D.** 780

Q.No.2:

A ray of light along $x+\sqrt{3}y=\sqrt{3}$ gets reflected upon reaching *x*-axis, the equation of the reflected ray is :

JEE 2013

- **A.** $y = x + \sqrt{3}$
- **B.** $\sqrt{3}y = x \sqrt{3}$
- **C.** $y = \sqrt{3}x \sqrt{3}$
- **D.** $\sqrt{3}y = x 1$

Q.No.3: Two sides of a rhombus are along the lines, x - y + 1 = 0 and 7x - y - 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus? **JEE 2016**

A.
$$(-3, -8)$$

B. $\left(\frac{1}{3}, -\frac{8}{3}\right)$
C. $\left(-\frac{10}{3}, -\frac{7}{3}\right)$
D. $(-3, -9)$

Q.No.4: A straight line through a fixed point (2, 3) intersects the coordinate

axes at distinct points P and Q. If O is the origin and the rectangle OPRQ is completed, then the locus of R is : **JEE 2018**

A. 3x + 2y = xy **B.** 3x + 2y = 6xy **C.** 3x + 2y = 6**D.** 2x + 3y = xy

Q.No.5: Consider the set of all lines px + qy + r = 0 such that 3p + 2q + 4r = 0. Which one of the following statements is true? **JEE 2019**

A. The lines are concurrent at the point $\left(\frac{3}{4}, \frac{1}{2}\right)$.

- **B.** Each line passes through the origin.
- **C.** The lines are all parallel.
- **D.** The lines are not concurrent.

Q.No.6: If θ denotes the acute angle between the curves, $y = 10 - x^2$ and $y = 2 + x^2$ at a point of their intersection, then $|\tan \theta|$ is equal to: **JEE 2019**

- **A.** $\frac{4}{9}$ **B.** $\frac{8}{15}$
- **C.** $\frac{7}{17}$ **D.** $\frac{8}{17}$

Q.No.7: Two sides of a parallelogram are along the lines, x + y = 3 and x - y
+ 3 = 0. If its diagonals intersect at (2, 4), then one of its vertex is : JEE 2019
A. (3, 5)

- **B.** (2, 1)
- **C.** (2, 6)
- **D.** (3, 6)

Q.No.8: A helicopter is flying along the curve given by $y - x^{\frac{3}{2}} = 7$, $(x \ge 0)$. A soldier positioned at the point $(\frac{1}{2}, 7)$ wants to shoot down the helicopter when it is nearest to him. Then this nearest distance is : **JEE 2019**

B.
$$\frac{1}{3}\sqrt{\frac{7}{3}}$$

C. $\frac{1}{6}\sqrt{\frac{7}{3}}$
D. $\frac{1}{2}$

Q.No.9: If in a parallelogram ABCD, the coordinates of A, B and C are respectively (1, 2), (3, 4) and (2, 5) then the equation of the diagonal AD is : **JEE 2019**

A. 5x - 3y + 1 = 0 **B.** 5x + 3y - 11 = 0 **C.** 3x - 5y + 7 = 0**D.** 3x + 5y - 13 = 0

Q.No.10: The straight line x + 2y = 1 meets the coordinate axes at A and B. A circle is drawn through A, B and the origin. Then the sum of perpendicular distances from A and B on the tangent to the circle at the origin is: **JEE 2019**

A. $\frac{\sqrt{5}}{2}$ **B.** $2\sqrt{5}$ **C.** $\frac{\sqrt{5}}{4}$ **D.** $4\sqrt{5}$