

JEE Main 1 Feb 2023(First Shift)

Total Time: 180

Total Marks: 300.0

Solution 1

$$l_{ ext{final}} = rac{1}{2} ig(rac{1}{2}ig)^{n-1}$$

$$\frac{1}{6^4} = \frac{1}{2^n}$$

$$n = 6$$

Solution 2

$$a = \frac{30 - 50\mu}{5}$$

$$\therefore s = ut + \frac{1}{2}at^2$$

$$50 = rac{1}{2} \left(rac{30-50\mu}{5}
ight) imes 100$$

$$5 = 30 – 50 \mu$$

$$\mu = \frac{25}{15} = 0.5$$

Solution 3

Statement-I is correct as $g' = g - \omega^2 R \cos^2 \phi$ Statement-II is clearly incorrect

Solution 4

(Theoretical)

- (A) Intrinsic semiconductor → II
- (B) n-type semiconductor \rightarrow III
- (C) p-type semiconductor \rightarrow I
- (D) Metals \rightarrow IV

$$egin{aligned} [a] &= \left[\mathrm{ML}^5 \, \mathrm{T}^{-2}
ight] \ [b] &= \left[L^3
ight] \ \left[rac{b^2}{a}
ight] = \left[rac{L^6}{\mathrm{ML}^5 \, \mathrm{T}^2}
ight] = \left[\mathrm{M}^{-1} \, \mathrm{LT}^{-2}
ight] \ &= \left[\mathrm{Compressibility}
ight] \end{aligned}$$

$$Bp=rac{\mu_0 i}{4\pi r}+rac{1}{2}\left(rac{\mu_0 i}{2r}
ight) \ rac{\mu_0 i}{4r}\left[rac{1}{\pi}+1
ight]$$

Solution 7

Speed of transverse wave = $\sqrt{\frac{T}{M}}$ = $\sqrt{\frac{70}{7\times10^{-3}}}$ = $100~\mathrm{m/s}$

Solution 8

$$egin{aligned} \gamma &= rac{3}{2} \ \omega &= rac{nR\Delta T}{1-\gamma} = rac{nRT_f - nRT_i}{1-\gamma} \ &= rac{(PV)_f - (PV_i)}{1-\gamma} \quad ... \end{aligned}$$

$$PV^{\gamma} = \text{constant}$$

$$P_i V_i^{\ \gamma} = P_f (2V_i)^{\gamma} \Rightarrow P_f = rac{P_i}{2^{\gamma}} = rac{P_i}{2\sqrt{2}} \quad ...(2)$$

From (1) and (2)

$$egin{aligned} \omega &= rac{rac{P_i}{2\sqrt{2}}2V_i - P_iV_i}{1-\gamma} = rac{P_iV_i}{rac{-1}{2}} \left(rac{1}{\sqrt{2}} - 1
ight) \ &= -nRT\left(\sqrt{2} - 2
ight) \ &= nRT\left(2 - \sqrt{2}
ight) \end{aligned}$$

Solution 9

Average kinetic energy of a molecule of gas $= rac{f}{2} k_B T$ f is degree of freedom.

Solution 10

AC generator works on EMZ principle (A-II) Transformer uses Mutual induction (B-IV)

Resonance occurs when both L and C are present (C–Z) and quality factor determines sharpness of resonance (D-III)

Solution 11

FM broadcast varies from 89 Hz to 108 Hz

Solution 12

$$M_E = 9M_P$$

$$R_E = 2R_P$$

Escape velocity =
$$\sqrt{\frac{2mG}{R}}$$

For earth
$$v_e = \sqrt{rac{2GM_E}{R_E}}$$

For P,
$$v_{
m e}=\sqrt{rac{rac{2GM_E}{9}}{rac{R_E}{2}}}=\sqrt{rac{2GM_E}{R_E} imesrac{2}{9}}$$

$$=rac{v_e\sqrt{2}}{3}$$

Solution 13

Mass defect = 2 (Mass of p + mass of n) – mass of He nucleus

$$\Delta m = 0.0305u$$

B.E =
$$931.5 \times \Delta m = 931.5 \times 0.0305$$

Solution 14

For same λ_1 momentum should be same,

$$(P)_p = (P)_a$$

$$\Rightarrow \sqrt{2k_pm_p} = \sqrt{2k_am_a}$$

$$\Rightarrow k_P m_P = k_a m_a$$

$$\frac{k_P}{k_a} = \left(\frac{m_a}{m_p}\right) = \frac{4}{1} = 4:1$$

Solution 15

Initial volume = Final volume

So,
$$R = 5r$$

Gain in surface energy = $[125 \times 4\pi r^2 \times T - 4\pi R^2 T]$

- $= 4\pi T [125r^2 R^2]$
- $= 16\pi R^2 T$
- $= 16\pi \times (10^{-3})^2 \times 0.45$
- $= 22.6 \times 10^{-6} J$
- $= 2.26 \times 10^{-5} J$

- 1. Klystron valve used to produce Microwave
- 2. Gamma ray \rightarrow Radioactive decay
- 3. Radio wave → Rapid acceleration and deacceleration of electrons in aerials
- 4. X-ray → Inner shell electrons

This is balanced Wheatstone bridge,

$$R_{eq} = rac{4R imes 8R}{12R} = \left(rac{8R}{3}
ight)$$

Solution 18

$$egin{aligned} v &= \sqrt{u^2 + 2gh} \ &= \sqrt{25 + 2 imes 10 imes 10} \ &= \sqrt{225} = 15 ext{ m/s} \end{aligned}$$

Solution 19

From the figure:

$$\overrightarrow{E}_1 = rac{\sigma}{2arepsilon_0} + rac{\sigma}{2arepsilon_0} \qquad \qquad ext{(Leftward)}$$

$$\overrightarrow{E}_2 = rac{\sigma}{2arepsilon_0} - rac{\sigma}{2arepsilon_0}$$

$$\overrightarrow{E}_2 = rac{\sigma}{2arepsilon_0} + rac{\sigma}{2arepsilon_0} \hspace{1cm} ext{(Rightward)}$$

$$AB = BC = CD$$

$$\Rightarrow$$
 Average speed $=$ $\frac{ ext{Distance}}{ ext{Time}}$ $=$ $\frac{AD}{\frac{AB}{V_1} + \frac{AB}{V_2} + \frac{AB}{V_3}}$ $=$ $\frac{3V_1V_2V_3}{V_1V_2 + V_2V_3 + V_1V_3}$

A:
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$
 $\Rightarrow \frac{1}{v} + \frac{1}{-45} = \frac{1}{-20}$
 $\Rightarrow \frac{1}{v} = \frac{1}{45} - \frac{1}{20} = \frac{4-9}{180} = -\frac{1}{36}$
 $\Rightarrow v = -36 \text{ cm}$

B: $\frac{1}{v} + \frac{1}{-35} = \frac{1}{-20}$
 $\Rightarrow \frac{1}{v} = \frac{1}{35} - \frac{1}{20} = \frac{4-7}{140}$
 $\Rightarrow v = -\frac{140}{3}$
 $\Rightarrow \text{ length of image} = \frac{140}{3} - 36 = \frac{32}{3} \text{ cm}$
 $\Rightarrow x = 32$

$$A = 3 \text{ cm}$$

 $K = 1.25 U$

$$\Rightarrow K + \frac{K}{1.25} = K_{\max}$$

$$\Rightarrow rac{9}{5}K = K_{
m max}$$

$$\Rightarrow rac{9}{5}rac{1}{2}mv^2 = rac{1}{2}mv^2_{
m max}$$

$$\Rightarrow rac{9}{5} \Big[\omega \sqrt{A^2-x^2}\Big]^2 = \omega^2 A^2$$

$$ightarrow 9\left(A^2-x^2
ight)=5A^2$$

$$\Rightarrow x^2 = rac{4A^2}{9}$$

$$\Rightarrow x = \frac{2A}{3}$$

$$\Rightarrow x = 2 \text{ cm}$$

$$B=rac{rac{-dp}{dv}}{v}$$

$$\Rightarrow rac{B_{ ext{water}}}{B_{ ext{Liquid}}} = rac{\left(rac{dv}{v}
ight)_{ ext{liquid}}}{\left(rac{dv}{v}
ight)_{ ext{water}}}$$

$$=\frac{0.03}{0.01}=3$$

$$\Rightarrow x = 1$$

Solution 24

Solution 25

Let the electron jumps to n^{th} orbit so

$$12.75 = 13.6 \left[rac{1}{1^2} - rac{1}{n^2}
ight]$$

$$\Rightarrow n=4$$

So
$$L = \frac{nh}{2\pi} = \frac{2h}{\pi}$$

$$= \frac{2 \times 4.14 \times 10^{-15}}{\pi}$$

$$=8.28 \times 10^{-15}$$

$$=828\times10^{-17}~\mathrm{eVs}$$

$$egin{align} W &= \overrightarrow{F} \cdot \left(\overrightarrow{r}_2 - \overrightarrow{r}_1
ight) \ &= \left(5 \hat{i} + 2 \hat{j} + 7 \hat{k}
ight) \cdot \left(3 \hat{i} - 5 \hat{j} + 5 \hat{k}
ight) \ &= 15 \text{--} 10 + 35 \ &= 40 \; ext{J} \ \end{cases}$$

Average rate of energy is maximum at resonance.

$$\therefore X_L = X_C$$

$$79.6 = \frac{1}{2\pi(50) \times C}$$

$$C = \frac{1}{79.6 \times 2\pi(50)}$$

$$\approx 40 \ \mu\text{F}$$

Solution 28

$$F_p = q_0 E_p = q_0 rac{kqz}{(a^2 + z^2)^{rac{3}{2}}} \ {
m or} \ F_p = rac{kqq_0 z}{(a^2 + z^2)^{rac{3}{2}}} \ ullet + q$$

$$egin{align} ext{To maximize} & rac{dF_p}{dz} = 0 \ ext{or} & kqq_0 rac{\left(a^2+z^2
ight)^{rac{3}{2}}-zrac{3}{2} imes2z\left(a^2+z^2
ight)^{rac{1}{2}}}{\left(a^2+z^2
ight)^3} = 0 \ & \Rightarrow z = rac{a}{\sqrt{2}} \ \end{aligned}$$

$$egin{aligned} R &= \sqrt{rac{2mqV}{qB}} \ R &= rac{1}{B} \sqrt{rac{2mV}{q}} \ \mathrm{or} \ m &= rac{R^2B^2q}{2V} \ &= rac{\left(3 imes10^{-2}
ight)^2 imes\left(4 imes10^{-3}
ight)^2 imes2 imes10^{-6}}{2 imes100} \ &= 144 imes10^{-18} \ \mathrm{kg} \end{aligned}$$

$$egin{aligned} E \propto l \ rac{E_1}{E_2} = rac{l_1}{l_2} \ rac{1.5}{E} = rac{60}{100} \ E = rac{150}{60} = rac{5}{2} = rac{25}{10} \ \mathrm{So} \ x = 25 \end{aligned}$$

Solution 31

- Chlorine can easily combine with oxygen to form oxides, which can explode
- Chemical reactivity of an element can be determined by its reaction with oxygen and Halogens

Hence, the correct answer is option (2).

Solution 32

$$A_{0.95}O$$

$$\% ext{ of A}^{2+} = rac{85}{95} imes 100 pprox 90\%$$

$$\% \text{ of A}^{3+} = \frac{10}{95} \times 100 \approx 10\%$$

Option (A) satisfies this condition

Hence, the correct answer is option (1).

Solution 33

Hydrogen is an environment friendly fuel as its combustion produces only water vapours.

Hence, the correct answer is option (3).

 C_2 and C_3OH are cis C_3 and C_4 are anti to each other.

Hence, the correct answer is option (3).

Solution 35

- (A) Tranquilizers are antidepressant drugs
- (B) Aspirin prevents blood clotting and hence Anti blood clotting
- (C) Salvarsan is an antibiotic
- (D) Soframicine is antiseptic

Hence, the correct answer is option (4).

Solution 36

$$\mathrm{C}\left(\mathrm{s}
ight)+rac{1}{2}\mathrm{O}_{2}\left(g
ight)
ightarrow\mathrm{CO}\left(g
ight) \hspace{0.5cm}\left(\Delta\mathrm{S}>0
ight)$$

Slope =
$$(-ve)$$

CO doesn't get decompose at high temperature.

Hence, the correct answer is option (2).

Solution 37

- (A) Molisch test is for carbohydrates
- (B) Biuret test is for proteins/peptide
- (C) Carbylamine test is for primary amine
- (D) Schiff's test is for aldehyde

Hence, the correct answer is option (3).

Solution 38

$$\mathrm{Fe^{3+}} + \left[\mathrm{Fe}\left(\mathrm{CN}\right)_{6}\right]^{4-} \rightarrow \mathrm{Fe_{4}}\big[\mathrm{Fe}(\mathrm{CN})_{6}\big]_{3}$$

prussian blue

Hence, the correct answer is option (2).

Solution 39

MW order, Kr > Ar > Ne > He Z (at critical point)= $\frac{3}{8}$

Hence, the correct answer is option (2).

CN⁻ is strongest field ligand among given ligands. Hence, the correct answer is option (3).

Solution 41

 $\label{eq:ABC} \begin{array}{l} A = FeSO_4 \ . \ (NH_4)_2SO_4 \ . \ 6H_2O \ - \ double \ salt \\ B. \ CuSO_4.4NH_3 \ . H_2O \ = \ [Cu(NH_3)_4]SO_4 \ . H_2O \ - \ complex \ salt \\ C. \ K_2SO_4 \ . Al_2(SO_4)_3.24H_2O \ - \ double \ salt \\ D. \ Fe(CN)_2 \ . 4KCN \\ K_4[Fe(CN)_6] \ - \ complex \ salt \\ \end{array}$

Hence, the correct answer is option (2).

Solution 42

Photochemical smog is caused by Nitrogen oxides which can be prevented by using catalytic convertors in the automobiles/industy.

Hence, the correct answer is option (3).

Solution 43

A: Cis – But-2-ene B: Trans-But-2-ene

BP: A > B MP: B > A

 μ -order = A > B (μ of B = 0) Addition of Br₂ is easy in B.

Thus, only statement (C) is incorrect.

Disclaimer: In this question, none of the options is correct.

Solution 44

- BeO is amphoteric
- BeCO₃ \rightleftharpoons BeO + CO₂

To shift equilibrium in backward direction, It is kept in atmosphere of CO₂

- BeSO₄ is readily soluble in water
- Be shows anomalous behaviour

Hence, the correct answer is option (4).

Solution 45

Mn is surrounded tetrahedrally by O-atoms. Mn_2O_7 , contains Mn-O-Mn Bridge.

Hence, the correct answer is option (1).

Solution 46

Hence, the correct answer is option (2).

Solution 47

A: Slaked lime: Ca(OH)₂

B: Dead burnt plaster: CaSO₄

C: Caustic Soda: NaOH

D: Washing Soda: Na₂CO₃. 10H₂O

Hence, the correct answer is option (1).

Solution 48

Hence, the correct answer is option (1).

Solution 49

b > d > c > a

b will form Aromatic Benzene on dehydration

d will form conjugated alkene

a will not undergo dehydration easily

Hence, the correct answer is option (3).

Solution 50

Resonating structures are hypothetical and are assumed to explain properties of Real hybrid.

Hence, the correct answer is option (1).

Bromic Acid
$$\left(HB \underset{+5}{r} O_3\right)$$
 Perbromic Acid $\left(HB \underset{+7}{r} O_4\right)$

Sum of oxidation states of bromine in bromic acid and perbromic acid is 12.

Solution 52

2 possibilities

$$CH = C CH_3$$

$$CH = C$$

Solution 53

$$\begin{split} & 25 \times \text{M} = 20 \times 1 \\ & M = \frac{20}{25} = \frac{4}{5} = 0.8 \\ & \Delta \, T_f = (i) \, (K_f) \, (m) \\ & = (2) \, (2) \left(\frac{4}{5} \right) = \frac{16}{5} = 3.\, 2 \end{split}$$

Nearest Integer = 3

Solution 54

$$\begin{array}{c} \mathbf{A} \ C_0 \xrightarrow{15 \ \text{min}} \frac{C_0}{2} \\ \\ \mathbf{B} \ 4C_0 \xrightarrow{5 \ \text{min}} \mathbf{2}C_0 \xrightarrow{5 \ \text{min}} C_0 \xrightarrow{5 \ \text{min}} \frac{C_0}{2} \end{array}$$

Solution 55

$$rac{ ext{(i)+(iii)}}{2}-\left(ext{ii}
ight)$$
 gives desired reaction
$$\Delta\,H_r=rac{436+78}{2}-\left(-242
ight) \label{eq:delta}$$
 $\Delta\,H_r=rac{436+78}{2}+242=499\,\, ext{kJ}\,\,\, ext{mol}^{-1}$

$$egin{aligned} m &= rac{1000 \, \mathrm{M}}{1000 \,
ho - \mathrm{Mmw}} = rac{1000 imes 3}{1000 - 3 imes (58.5)} \ &= rac{3000}{(1000 - 175.5)} = 3.638 \ &= 363.8 imes 10^{-2} \ &\mathrm{Nearest integer} \ = 364 \end{aligned}$$

- Characteristics of electrons emitted doesn't depend upon material of electrode, nature of gas present.

$$\begin{array}{l} \bullet \text{ Cathode rays start from cathode} \\ \bullet \ \lambda = \frac{h}{mv} = \frac{6\times 10^{-34}}{(9\times 10^{-31})(10^3)} = 0.\,666\times 10^{-6}\ m \end{array}$$

$$\lambda = 666.67 \text{ nm}$$

A & C are correct

Solution 58

$$egin{array}{lll} X_{(g)} &\leftrightarrows Y_{(g)} + Z_{(g)} & K_{p1} = 3 \ \downarrow & \downarrow & \downarrow \ (1-a) & a & a \end{array}$$

mole fraction $\left(\frac{1-a}{1+a}\right) \left(\frac{a}{1+a}\right) \left(\frac{a}{1+a}\right)$

$$egin{align} \mathrm{K}_{\mathrm{p}_{1}} &= 3 = rac{lpha}{(1+lpha)} rac{lpha}{(1+lpha)} rac{(1+lpha)}{(1-lpha)} ig(p_{1}ig)^{1} \ 3 &= rac{lpha^{2}}{1-lpha^{2}}.\,p_{1} \end{aligned}$$

mole fraction $\left(\frac{1-a}{1+a}\right)$ $\left(\frac{2a}{1+a}\right)$

$$egin{align} 1 &= rac{4lpha^2}{(1+lpha)^2}rac{(1+lpha)}{(1-lpha)}\cdot p_2 \ &= rac{4lpha^2}{1-lpha^2}\cdot p_2 \ &rac{Kp_1}{Kp_2} &= rac{3}{1} = rac{p_1}{4p_2} \ &\Rightarrow rac{p_1}{p_2} &= 12 \end{gathered}$$

$$5e^{-} + 8\mathrm{H}^{+} + \mathrm{MnO_{4}^{-}} \rightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_{2}O}$$

$$10^{-1} \quad 10^{-3}$$
 $1.282 = 1.54 - \frac{.059}{5}\log \frac{10^{-3}}{10^{-1}(\mathrm{H}^{+})^{8}}$
 $-.258 = \frac{-.059}{5} \left(-2 + 8\,\mathrm{pH}\right)$
 $21.8644 = \left(-2 + 8\,\mathrm{pH}\right)$
 $23.8644 = 8\,\mathrm{pH}$
 $\mathrm{pH} = 2.98 \approx 3$

Solution 60

Compound I – achiral Compound II – chiral Compound III – achiral Compound IV – chiral Compound V – achiral

Solution 61

Altitude of *BC* is
$$y - 2 = \frac{1}{2}(x - 1) \Rightarrow x - 2y + 3 = 0$$

Altitude of *AB* is $y - 1 = (-1)(x - 3) \Rightarrow x + y = 4$
 \therefore Orthocentre $\left(\frac{5}{3}, \frac{7}{3}\right)$
 $\therefore \alpha + 4\beta = 11$ and $4\alpha + \beta = 9$
Equation is $x^2 - 20x + 99 = 0$

Hence, the correct answer is option (1).

Let observations 1, 3, 5,
$$a$$
, b

$$\Rightarrow \frac{9+a+b}{5} = 5 & \frac{a^2+b^2+35}{5} - 25 = 8$$

$$\Rightarrow a+b = 16 & a^2+b^2 = 130$$

$$\therefore a & b \text{ are 7 & 9}$$

$$\therefore a^3+b^3=7^3+9^3=1072$$

Hence, the correct answer is option (4).

Solution 63

$$(x-2)^{2} + y^{2} = 4(x-3)^{2} + 4y^{2}$$

$$\Rightarrow 3x^{2} + 3y^{2} - 20x + 32 = 0$$

$$\therefore C \equiv \left(\frac{10}{3}, 0\right) \& r = \sqrt{\left(\frac{10}{3}\right)^{2} - \frac{32}{3}} = \frac{2}{3}$$

$$\therefore 3(\alpha + \beta + \gamma) = 3\left(\frac{12}{3}\right) = 12$$

Solution 64

$$\frac{dy}{dx} + y \tan x = x \sec x$$

$$\therefore \text{ I.F} = e^{\int \tan x dx} = \sec x$$

$$\Rightarrow y \sec x = \int x \sec^2 x dx$$

$$\Rightarrow y \sec x = x \tan x - \ln|\sec x| + c \cos x$$

$$\downarrow y(0) = 1$$

$$\Rightarrow 1 = e$$

$$\therefore y = x \sin x - \cos x \ln|\sec x| + \cos x$$

$$\therefore y\left(\frac{\pi}{6}\right) = \frac{\pi}{12} - \frac{\sqrt{3}}{2}\ln\left(\frac{2}{\sqrt{3}e}\right)$$

Hence, the correct answer is option (4).

$$S = \sum_{r=1}^{10} \frac{r}{1+r^2+r^4} = \frac{1}{2} \sum \left(\frac{1}{r^2-r+1} - \frac{1}{r^2+r+1} \right)$$

$$T_1 = \frac{1}{2} \left(\frac{1}{1^2-1+1} - \frac{1}{1^2+1+1} \right)$$

$$T_2 = \frac{1}{2} \left(\frac{1}{2^2-2+1} - \frac{1}{2^2+2+1} \right)$$

$$T_3 = \frac{1}{2} \left(\frac{1}{3^2-3+1} - \frac{1}{3^2+3+1} \right)$$

$$\vdots$$

$$T_{10} = rac{1}{2} \left(rac{1}{10^2 - 10 + 1} - rac{1}{10^2 + 10 + 1}
ight) \ S = rac{1}{2} \left(1 - rac{1}{111}
ight) = rac{55}{111}$$

Hence, the correct answer is option (3).

Solution 66

$$\frac{x^2 - y^2}{2 - (-3)} = \frac{xy}{\frac{1}{2}}$$
OR $x^2 - y^2 = 10xy$

Hence, the correct answer is option (4).

Solution 67

Disclaimer: None of the options is correct.

$$\cos^{-1}\Bigl(2x\Bigr)-2\cos^{-1}\Bigl(\sqrt{1-x^2}\Bigr)=\pi$$

This is possible only when

$$\cos^{-1}(2x) = \pi$$
 ...(i)
And $2\cos^{-1}\sqrt{1-x^2} = 0$...(ii)

And
$$2\cos^{-1}\sqrt{1-x^2}=0$$
 ...(ii)

From (i)
$$x = -\frac{1}{2}$$

Which does not satisfy (ii)

So no such x exist

Solution 68

$$rac{1}{(51)!} \left({}^{51}C_1 + {}^{51}C_3 + \ldots + {}^{51}C_{51} \right)$$

$$= rac{2^{50}}{(51)!}$$

Hence, the correct answer is option (1).

$$\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & \lambda & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & 1 & \lambda \\ 1 & 1 & \lambda \end{vmatrix}$$

$$\lambda(\lambda^{2} - 1) - 1 (\lambda - 1) + 1 (1 - \lambda) = 0$$

$$\lambda^{3} - \lambda - \lambda + 1 + 1 - \lambda = 0$$

$$\lambda^{3} - 3\lambda + 2 = 0$$

$$(\lambda - 1)(\lambda^{2} + \lambda - 2) = 0$$

$$\lambda = 1, -2$$

For $\lambda = 1 \Rightarrow \infty$ solution $\lambda = -2 \Rightarrow$ no solution $\sum_{\lambda \in S} \left| \lambda \right|^2 + \left| \lambda \right| = 6$

Hence, the correct answer is option (3).

Solution 70

We know that

 $\cos 2A + \cos 2B + \cos 2C \ge \frac{-3}{2}$ where equality holds for equilateral triangle

$$r=rac{\Delta}{s}=rac{rac{\sqrt{3}}{4}a^2}{rac{3}{2}a}=rac{a}{2\sqrt{3}}$$

$$a = 2\sqrt{3r} = 6\sqrt{3}$$

Area
$$=rac{\sqrt{3}}{4}a^2=27\sqrt{3}$$

Hence, the correct answer is option (3).

$$egin{aligned} C_1
ightharpoonup & = C_1 + C_2 + C_3 \ & \left[egin{aligned} 1 & \cos^2 x & \sin 2x \ 1 & 1 + \cos^2 x & \sin 2x \ 1 & \cos^2 x & 1 + \sin 2x \end{aligned} \end{aligned}$$

$$R_2 o R_2 o R_1; R_3 o R_3 o R_1 \ \left(egin{array}{cccc} 2 + \sin 2x \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

$$f\!\left(x
ight) = 2 + \sin 2x; \; x \in \left[rac{\pi}{6}, rac{\pi}{3}
ight]$$

$$egin{align} f(x)_{ ext{max}} &= 2+1 = 3 \ for \ x = rac{\pi}{4} \ f(x)_{ ext{min}} &= 2 + rac{\sqrt{3}}{2} ext{for } \ x = rac{\pi}{6}, rac{\pi}{3} \ eta^2 - 2\sqrt{lpha} = 4 + rac{3}{4} + 2\sqrt{3} - 2\sqrt{3} \ &= rac{19}{4} \ \end{array}$$

Hence, the correct answer is option (4).

Solution 72

$$\frac{dy}{dx} + \frac{x+a}{y-2} = 0$$

$$(y-2)dy + (x+a)dx = 0$$
Integrating
$$\frac{y^2}{2} - 2y + \frac{x^2}{2} + ax = C$$
Or $x^2 + 2ax + y^2 - 4y = C$
At $x = 1$, $y = 0$

$$1 + 2a = C$$
Equation of circle
$$x^2 + 2ax + y^2 - 4y = 1 + 2a$$

$$x^2 + y^2 + 2ax - 4y - (1 + 2a) = 0$$

$$r = \sqrt{a^2 + 4 + 1 + 2a} = 2$$

$$a^2 + 2a + 5 = 4 \Rightarrow \boxed{a = -1}$$
Curve is $x^2 + y^2 - 2x - 4y + 1 = 0$
Intersection with y -axis
$$P = \left(0, \ 2 + \sqrt{3}\right) \ Q \equiv 0, \ 2 - \sqrt{3}$$
For normal at $P \otimes Q$

$$R = \left(1 + \frac{2}{\sqrt{3}}, 0\right), \ S = \left(1 - \frac{2}{\sqrt{3}}, 0\right)$$

$$RS = \frac{4\sqrt{3}}{3}$$

Hence, the correct answer is option (4).

$$f'\left(x
ight) = 2 + rac{1}{1+x^2}, \; g'\left(x
ight) = rac{1}{\sqrt{x^2+1}}$$
 $f"\left(x
ight) = -rac{2x}{(1+x^2)^2} < 0$
 $g"\left(x
ight) = -rac{1}{2}ig(x^2+1ig)^{-3/2} \cdot 2x < 0$
 $f'\left(x
ight)igg|_{\min} = f'ig(3igg) = 2 + rac{1}{10} = rac{21}{10}$
 $g'(x)igg|_{\max} = g'(0) = 1$

$$f'(x)|_{\max} = f(3) = 2 + \tan^{-1} 3$$

 $g(x)|_{\max} = g(3) = \ln(3 + \sqrt{10}) < \ln < 7 < 2$

Hence, the correct answer is option (4).

Solution 74

$$np + npq = 5$$

 $np(1 + q) = 5$...(i)
 $np(npq) = 6$...(ii)
 $\Rightarrow np = 3, npq = 2$
 $\Rightarrow q = \frac{2}{3}, p = \frac{1}{3}, n = 9$
 $6(n + p - q) = 6(9 + \frac{1}{3} - \frac{2}{3}) = 6(9 - \frac{1}{3})$
 $= 52$

Hence, the correct answer is option (1).

Solution 75

$$egin{aligned} rac{\partial}{\partial 1} imesrac{\partial}{\partial 2}&=igg|egin{aligned} \hat{i}&\hat{j}&\hat{k}\ 1&2&-3\ 1&4&-5 \end{aligned}igg|=\hat{i}\left(2
ight)-\hat{j}\left(-2
ight)+\hat{k}\left(2
ight)\ dots&rac{\partial}{\partial 1} imesrac{\partial}{\partial 2}&=\hat{i}+\hat{j}+\hat{k}\ rac{\partial}{\partial 1}&-rac{\partial}{\partial 2}&=8\hat{i}+7\hat{j}+3\hat{k} \end{aligned}$$
 $d=rac{\left(rac{\partial}{\partial 1}-rac{\partial}{\partial 2}
ight)\cdot\left(rac{\partial}{\partial 1} imesrac{\partial}{\partial 2}
ight)}{\left|rac{\partial}{\partial 1} imesrac{\partial}{\partial 2}
ight|}&=\left|rac{8+7+3}{\sqrt{3}}
ight|=rac{18}{\sqrt{3}}=6\sqrt{3}$

Hence, the correct answer is option (2).

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+3} \dots \frac{1}{n+n} \right)$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \left(\frac{1}{1 + \left(\frac{r}{n} \right)} \right)$$

$$= \int_{0}^{1} \frac{dx}{1+x} = \log \left(1 + x \right)_{0}^{1} = \log 2$$

Hence, the correct answer is option (3).

Solution 77

For reflexive:

 $3a-3a+\sqrt{7}$ is an irrational number $orall a \in RR$ is reflexive For symmetric

Let $3a - 3b + \sqrt{7}$ is an irrational number

$$\Rightarrow 3b - 3a + \sqrt{7}$$
 is an irrational number

For e.g., Let
$$3a-3b=\sqrt{7}$$

 $\sqrt{7} + \sqrt{7}$ is irrational but $-\sqrt{7} + \sqrt{7}$ is not.

∴ R is not symmetric

For transitive:

Let $3a-3b+\sqrt{7}$ is irrational and $3b-3c+\sqrt{7}$ is irrational $\Rightarrow 3a-3c+\sqrt{7}$ is irrational

For e.g., take a = 0, $b = -\sqrt{7}$, $c = \frac{\sqrt{7}}{3}$

R is not transitive.

Hence, the correct answer is option (1).

Solution 78

$$q \lor (\sim q \land p)$$

$$\Rightarrow (q \lor \sim q) \land (q \lor p)$$

$$\Rightarrow T \land (q \lor p)$$

$$\Rightarrow q \lor p$$
Now,
$$\sim (q \lor p)$$

$$= \sim q \land \sim p$$

Hence, the correct answer is option (4).

$$\begin{aligned} & \text{Let } \left(\sqrt{3} + \sqrt{2}\right)^{x^2 - 4} = t \\ & t + \frac{1}{t} = 10 \\ & \Rightarrow t^2 - 10t + 1 = 0 \\ & \Rightarrow t = \frac{10 \pm \sqrt{100 - 4}}{2} = 5 \pm 2\sqrt{6} \end{aligned}$$

Case-I

$$egin{aligned} t &= 5 + 2\sqrt{6} \ \Rightarrow \left(\sqrt{3} + \sqrt{2}
ight)^{x^2 - 4} &= \left(\sqrt{3} + \sqrt{2}
ight)^2 \ \Rightarrow x^2 - 4 &= 2 \Rightarrow 6 = x = \pm \sqrt{6} \end{aligned}$$

Case-II

$$egin{aligned} t &= 5 - 2\sqrt{6} \ \left(\sqrt{3} + \sqrt{2}
ight)^{x^2 - 4} &= \left(\sqrt{3} - \sqrt{2}
ight)^2 \ &= \left(\left(\sqrt{3} - \sqrt{2}
ight)^{-1}
ight)^{x^2 - 4} &= \left(\sqrt{3} - \sqrt{2}
ight)^2 \ &= 4 - x^2 = 2 \ &= x^2 = 2 \ &= x = \pm \sqrt{2} \end{aligned}$$

Hence, the correct answer is option (4).

Solution 80

P(2, -1, 3) Plane:
$$x + 2y - z = 0$$

Let $Q(a, β γ)$
Then,

$$\frac{\alpha - 2}{1} = \frac{\beta + 1}{2} = \frac{\gamma - 3}{-1} = \frac{-2(-3)}{6}$$
∴ $a = 3$, $β = 1$, $γ = 2$
Now distance of Q from the plane $3x + 2y + z + 29 = 0$

$$\left(d = \frac{9 + 2 + 2 + 29}{\sqrt{14}} = \frac{42}{\sqrt{14}} = 3\sqrt{14}\right)$$

Hence, the correct answer is option (4).

$$A(2, 6, 2)$$

$$D(4, 5, 0)$$

$$C(2, 3, -1)$$

$$\overrightarrow{d}_{1} = 3\hat{j} + 3\hat{k}$$

$$\overrightarrow{d}_{2} = 8\hat{i} + 5\hat{j} - \lambda \hat{k}$$

$$\overrightarrow{d}_{1} \times \overrightarrow{d}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & 3 \\ 8 & 5 & -\lambda \end{vmatrix}$$

$$= (-3\lambda - 15)\hat{i} + 24\hat{j} - 24\hat{k}$$

$$\frac{1}{2} |\overrightarrow{d}_{1} \times \overrightarrow{d}_{2}| = 18$$

$$\sqrt{(3\lambda + 15)^{2} + 24^{2} + 24^{2}} = 36$$

$$(3\lambda + 15)^{2} = 1296 - 1152$$

$$3\lambda + 15 = \pm 12$$

$$3\lambda = -3$$

$$\lambda = -1$$

$$3\lambda + 15 = -12$$

$$\lambda = -\frac{27}{3}$$

$$\lambda = -9$$

$$\therefore \lambda \in [-5, 5]$$

$$\therefore \lambda = -1$$

$$5 - 6(-1) = 11$$

$$ext{Area} = \int\limits_{-1}^{2} \left| 3x - x^2
ight|$$

$$A = \int\limits_{-1}^{0} x^2 - 3x \; dx + \int\limits_{0}^{2} 3x - x^2 dx$$

$$= \frac{x^3}{3} - \frac{3x^2}{2} \bigg]_{-1}^{0} + \frac{3x^2}{2} - \frac{x^3}{3} \bigg]_{0}^{2}$$

$$=0-\left(rac{-1}{3}-rac{3}{2}
ight)+\left(6-rac{8}{3}
ight)-0$$

$$=\frac{31}{6}$$

$$\therefore 12A = 62$$

Number of arrangements = $\frac{8!}{4!2!} imes \frac{6!}{3!2!} = 50400$

$$\begin{array}{ll} \overrightarrow{v} \times \overrightarrow{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix} = \hat{i} - 5a\hat{j} - 3a\hat{k} \\ \left[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}\right] = \overrightarrow{u} \cdot \left(\overrightarrow{v} \times \overrightarrow{w}\right) \\ = \left|\overrightarrow{u}\right| \left|\overrightarrow{v} \times \overrightarrow{w}\right| \times \cos\theta \\ = \alpha\sqrt{34\alpha^2 + 1\cos\theta} \\ \left[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}\right]_{\min} = -\alpha\sqrt{3401} \\ \alpha\sqrt{34\alpha^2 + 1} \times (-1) = -\alpha\sqrt{3401} \\ (\text{taking } \cos\theta = 1) \\ \Rightarrow \alpha = 10 \\ \overrightarrow{v} \times \overrightarrow{w} = \hat{i} - 50\hat{j} - 30\hat{k} \\ \cos\theta = -1 \Rightarrow \overrightarrow{u} \text{ is antiparallel to } \overrightarrow{v} \times \overrightarrow{w} \\ \overrightarrow{u} = -\left|\overrightarrow{u}\right| \cdot \frac{\overrightarrow{v} \times \overrightarrow{w}}{\left|\overrightarrow{v} \times \overrightarrow{w}\right|} = \frac{-10\left(\hat{i} - 50\hat{j} - 30\hat{k}\right)}{\sqrt{3401}} \\ \left|\overrightarrow{u} \cdot \hat{i}\right|^2 = \left|\frac{-10}{\sqrt{3401}}\right|^2 = \frac{100}{3401} = \frac{m}{n} \\ m + n = 3501 \end{array}$$

Given,
$$a_1 = 8$$
, a_2 , a_3 ...an are in A.P.
Now $2(16 + 3d) = 50$
 $3d = 9 \Rightarrow d = 3$
Now $2(2a_n - 9) = 170$
 $a_n = 47$
 $8 + (n - 1) 3 = 47$
 $n = 14$
Product of middle two terms = $a_7 \times a_8$
= $(8 + 18) (8 + 21)$
= 26×29
= 754

$$egin{align} I &= \int_0^1 \Bigl(x^{21} + x^{14} + x^7 \Bigr) \, \left(2 x^{14} + 3 x^7 + 6
ight)^{1/7} \, dx \ I &= \int_0^1 \Bigl(x^{20} + x^{13} + x^6 \Bigr) \, \left(2 x^{21} + 3 x^{14} + 6 x^7
ight)^{1/7} \, dx \ \end{align}$$

Let
$$2x^{21} + 3x^{14} + 6x^7 = t$$

 $\Rightarrow 42(x^{20} + x^{13} + x^6)dx = dt$
 $I = \frac{1}{42} \int_0^{11} t^{1/7} dt = \frac{1}{42} \frac{7}{8} \left[t^{8/7} \right]_0^{11}$
 $= \frac{1}{48} 11^{817}$
 $\therefore I = 48, m = 8, n = 7$
 $\therefore I + m + n = 63$

$$f'(x) + f(x) = k$$

$$\Rightarrow e^{x}f(x) = ke^{x} + c$$

$$f(x) = k + ce^{-x}$$

$$k = \int_{0}^{2} \left(k + ce^{-t}\right) dt$$

$$k = 2k + c \cdot \left(\frac{e^{-t}}{-1}\right)_{0}^{2}$$

$$k = 2k + c\left(\frac{e^{-2}}{-1} + 1\right)$$

$$-k = c\left(1 - \frac{1}{e^{2}}\right)$$

$$egin{align} f\Big(x\Big) &= ce^{-x} - c\left(1 - rac{1}{e^2}
ight) \ f\Big(0\Big) &= c - c + rac{c}{e^2} = rac{1}{e^2} \Rightarrow c = 1 \ f\Big(2\Big) &= e^{-2} - r\Big(1 - e^{-2}\Big) \ \end{array}$$

$$= 2e^{-2} - 1$$
$$2f(0) - f(2) = 1$$

Let
$$g'(1) = a$$
 and $g''(2) = b$
 $\Rightarrow f(x) = x^2 + ax + b$
Now, $f(1) = 1 + a + b$; $f'(x) = 2x + a$; $f''(x) = 2$
 $g(x) = (1 + a + b)x^2 + x(2x + a) + 2$
 $\Rightarrow g(x) = (a + b + 3)x^2 + ax + 2$
 $\Rightarrow g'(x) = 2x(a + b + 3) + a \Rightarrow g'(1) = 2(a + b + 3 + a = a)$
 $\Rightarrow a + b + 3 = 0$...(i)

$$g''(x) = 2(a + b + 3) = b$$

 $\Rightarrow 2a + b + 6 = 0$...(ii)
Solving (i) and (ii), we get
 $a = -3$ and $b = 0$
 $f(x) = x^2 - 3x$ and $g(x) = -3x + 2$
 $f(4) = 4$ and $g(4) = -12 + 2 = -10$
 $\Rightarrow f(4) - g(4) = 16 - 2 = 14$

A = Numbers divisible by 2 B = Numbers divisible by 3 C = Numbers divisible by 7 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ = n(2) + n(3) - n(6) n(A) = n(2) = 100, 102..., 998, = 450 n(B) = n(3) = 102, 105, ..., 999 = 30 $n(A \cap B) = n(6) = 102, 108, ..., 996 = 150$ n(2 or 3) = 450 + 300 - 150 = 600Now, $n(A \cap C) = n(14) = 112, 126, ..., 994 = 64$ $n(A \cap B \cap C) = n(42) = 126, 168, ..., 966 = 21$ $n(B \cap C) = n(21) = 105, 126, ..., 987, = 43$ n(2 or 3 not by 7) = 600 - [64 + 43 - 21]= 514

$$19^{200} + 23^{200}$$

 $(21 - 2)^{200} + (21 + 2)^{200} = 49\lambda + 2^{201}$
 $2^{201} = 8^{67} = (7 + 1)^{67} = 49\lambda + 7 \times 67 + 1$
 $= 49\lambda + 470$
 $= 49(\lambda + 9) + 29$
Remainder = 29