The d- and f- block Elements

Q.No.1:

Which of the following arrangements does not represent the correct order of the property stated against it ?

JEE 2013

A.
$$V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$$
: paramagnetic behaviour

B.
$$Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$$
: ionic size

C.
$$Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$$
: stability in aqueous solution

Q.No.2:

Four successive members of the first row transition elements are listed below with atomic numbers. Which one of them is expected to have the highest $E^0_{M^{3+}/M^{2+}}$ value ?

JEE 2013

A.
$$Cr(Z = 24)$$

B.
$$Mn(Z = 25)$$

C.
$$Fe(Z = 26)$$

D.
$$Co(Z = 27)$$

Q.No.3: The equation which is balanced and represents the correct product(s) is

A. [Mg (H₂O)₆]²⁺ + (EDTA)⁴⁻
$$\xrightarrow{\rm excess~NaOH}$$
 $\left[{\rm Mg\,(EDTA)}\right]^{2+} + 6{\rm H}_2{\rm O}$

B.
$$CuSO_4 + 4KCN \rightarrow K_2[Cu(CN)_4] + K_2SO_4$$

C. Li₂O + 2KCl
$$\rightarrow$$
 2LiCl + K₂O

D.
$$[CoCl(NH_3)_5]^+ + 5H^+ \rightarrow Co^{2+} + 5NH_4^+ + Cl^-$$

Q.No.4: Which series of reactions correctly represents the chemical relations

related to iron and its compounds?

$$\begin{array}{c} \textbf{A.} \quad Fe \stackrel{Cl_2, \; heat}{\longrightarrow} FeCl_3 \stackrel{heat, \; air}{\longrightarrow} FeCl_2 \stackrel{Zn}{\longrightarrow} Fe \\ \textbf{B.} \quad Fe \stackrel{O_2, \; heat}{\longrightarrow} Fe_3 \, O_4 \stackrel{CO, \, 600\,^{\circ}\text{C}}{\longrightarrow} FeO \stackrel{CO, \, 700\,^{\circ}\text{C}}{\longrightarrow} Fe \\ \textbf{C.} \quad Fe \stackrel{\text{dil } \text{H}_2 \, \text{SO}_4}{\longrightarrow} FeSO_4 \stackrel{\text{H}_2 \, \text{SO}_4, \, O_2}{\longrightarrow} Fe_2 \, (\text{SO}_4)_3 \stackrel{\text{heat}}{\longrightarrow} Fe \\ \textbf{D.} \quad Fe \stackrel{O_2, \; heat}{\longrightarrow} FeO \stackrel{\text{dil } \text{H}_2 \, \text{SO}_4}{\longrightarrow} FeSO_4 \stackrel{\text{heat}}{\longrightarrow} Fe \\ \end{array}$$

$$Fe \xrightarrow{O_2, \text{ heat}} Fe_3 O_4 \xrightarrow{CO, 600^{\circ}C} FeO \xrightarrow{CO, 700^{\circ}C} Fe$$

$$\begin{array}{c} \textbf{C.} \quad \text{Fe} \xrightarrow{\quad \text{dil } \text{H}_2 \, \text{SO}_4 \quad } \text{FeSO}_4 \xrightarrow{\quad \text{H}_2 \, \text{SO}_4, \, \text{O}_2 \quad } \text{Fe}_2 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_2 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_3 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_4 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Fe}_5 \, \big(\text{SO}_4 \big)_3 \xrightarrow{\quad \text{heat} \quad } \text{Heat} \)$$

$$\begin{array}{c} \textbf{D.} \ \ \textbf{Fe} \xrightarrow{O_2, \ \text{heat}} \ \ \textbf{FeO} \xrightarrow{\quad \ \ \, \text{dil } H_2 \, \text{SO}_4 \\ \hline \end{array} \rightarrow \begin{array}{c} \text{FeSO}_4 \xrightarrow{\quad \ \ \, \text{heat} \\ \hline \end{array} \rightarrow \begin{array}{c} \text{Fe} \\ \textbf{Fe} \\ \hline \end{array}$$

Q.No.5: Match the catalysts to the correct processes:

Catalyst Process

- (A) TiCl₃ (i) Wacker process
- (B) PdCl₂ (ii) Ziegler Natta polymerization (C) CuCl₂ (iii) Contact process
- (D) V_2O_5 (iv) Deacon's process

JEE 2015

A. (A)
$$-$$
 (iii), (B) $-$ (ii), (C) $-$ (iv), (D) $-$ (i)

B. (A)
$$-$$
 (ii), (B) $-$ (i), (C) $-$ (iv), (D) $-$ (iii)

C. (A)
$$-$$
 (ii), (B) $-$ (iii), (C) $-$ (iv), (D) $-$ (i)

D. (A)
$$-$$
 (iii), (B) $-$ (i), (C) $-$ (ii), (D) $-$ (iv)

Q.No.6: Which of the following atoms has the highest first ionization energy?

JEE 2016

- A. Na
- **B.** K
- C. Sc
- D. Rb

Q.No.7: The transition element that has lowest enthalpy of atomisation, is:

JEE 2019

- A. Fe
- B. Cu
- C. V
- **D.** Zn

Q.No.8: In the reaction of oxalate with permanganate in acidic medium, the

number of electrons involved in producing one molecule of CO₂ is: **JEE 2019**

- **A.** 1
- **B.** 10
- **C.** 2
- **D.** 5

Q.No.9: The element that usually does NOT show variable oxidation states is:

JEE 2019

- A. Cu
- **B.** Ti
- C. Sc
- D. V

$$\underline{\underline{A}} \xrightarrow{ ext{4 KOH, O}_2} \underbrace{ ext{2} \underline{B}}_{ ext{4 HC } l} + \ 2 ext{H}_2 ext{O}$$

Q.No.10: $3 \xrightarrow{B} \xrightarrow{\text{4 HC } l} 2 \xrightarrow{\text{C}} + \text{MnO}_2 + 2 \text{H}_2 \text{O}$

$$2 \stackrel{\text{H}_2O, Kl}{\longrightarrow} 2 \stackrel{\text{A}}{\longrightarrow} + 2 \stackrel{\text{KOH}}{\longrightarrow} + \frac{1}{2} \stackrel{\text{C}}{\longrightarrow} + \frac{1}{2} \stackrel{\text{C}}{\longrightarrow}$$

In the above sequence of reactions, \underline{A} and \underline{D} , respectively, are : **JEE 2019**

- **A.** KI and KMnO₄
- ${\bf B.}\ MnO_2\ and\ KIO_3$
- \mathbf{C} . KIO₃ and MNO₂
- $\textbf{D.}\;\text{KI}\;\text{and}\;\text{K}_2\text{MnO}_4$