

Thermodynamics

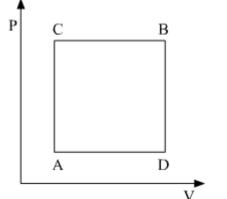
Q.No.1: One mole of a diatomic ideal gas undergoes a cyclic process ABC, as shown in the figure. The process BC is adiabatic. The temperatures at A, B and C are 400 K, 800 K and 600 K, respectively. Choose the correct statement.

- **A.** The change in internal energy in process AB is -350 R.
- **B.** The change in internal energy in process BC is -500 R.
- **C.** The change in internal energy in the whole cyclic process is 250 R.
- **D.** The change in internal energy in process CA is 700 R.

Q.No.2: Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increase as V^q , where V is the volume of the gas. The value of q is :

$$\left(\gamma=rac{\mathrm{C_p}}{\mathrm{C_v}}
ight)$$
 A. $rac{3\gamma+5}{6}$ B. $rac{3\gamma-5}{6}$ C. $rac{\gamma+1}{2}$ D. $rac{\gamma-1}{2}$

Q.No.3: Two moles of an ideal mono-atomic gas occupies a volume V at 27°C.


JEE 2015

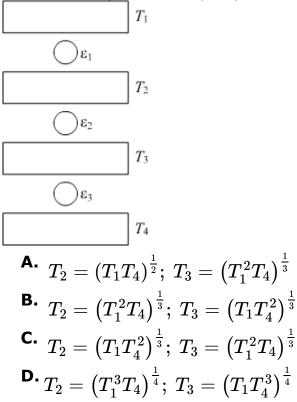
The gas expands adiabatically to a volume 2 V. Calculate (a) the final temperature of the gas and (b) change in its internal energy.

JEE 2018

- A. (a) 189 K (b) 2.7 kJ
 B. (a) 195 K (b) 2.7 kJ
 C. (a) 189 K (b) 2.7 kJ
- **D.** (a) 195 K (b) 2.7 kJ

Q.No.4: A gas can be taken from A to B via two different processes ACB and ADB.

When path ACB is used 60 J of heat flows into the system and 30 J of work is done by the system. If path ADB is used work done by the system is 10 J. The heat Flow into the system in path ADB is: JEE 2019

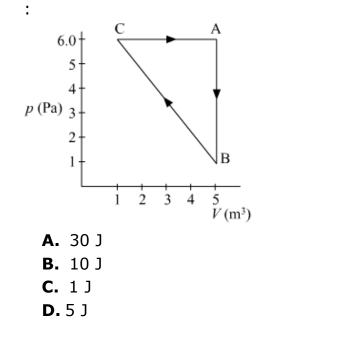

- **A.** 40 J
- **B.** 80 J
- **C.** 100 J
- **D.** 20 J

Q.No.5: Two Carnot engines A and B are operated in series. The first one, A, receives heat at $T_1(= 600 \text{ K})$ and rejects to a reservoir at temperature T_2 . The second engine B receives heat rejected by the first engine and, in turn, rejects to a heat reservoir at $T_3(= 400 \text{ K})$. Calculate the temperature T_2 if the work outputs of the two engines are equal: **JEE 2019**

- **A.** 600 K
- **B.** 400 K
- **C.** 300 K
- **D.** 500 K

Q.No.6: Three Carnot engines operate in series between a heat source at a temperature T_1 and a heat sink at temperature T_4 (see figure). There are two

other reservoirs at temperature T_2 and T_3 , as shown, with $T_1 > T_2 > T_3 > T_4$. The three engines are equally efficient if:

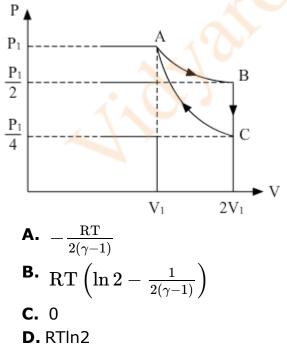

Q.No.7: A rigid diatomic ideal gas undergoes an adiabatic process at room temperature. The relation between temperature and volume for this process is TV^{x} = constant, then x is: **JEE 2019**

A.
$$\frac{3}{5}$$

B. $\frac{2}{5}$
C. $\frac{2}{3}$
D. $\frac{5}{3}$

Q.No.8: An ideal gas occupies a volume of 2 m³ at a pressure of 3 \times 10⁶ Pa. The energy of the gas is : **JEE 2019**

A. 9×10^{6} J **B.** 6×10^{4} J **C.** 10^{8} J **D.** 3×10^{2} J **JEE 2019**


Q.No.9: For the given cyclic process CAB as shown for a gas, the work done is

Q.No.10: If one mole of an ideal gas at (P_1, V_1) is allowed to expand reversibly and isothermally (A to B) its pressure is reduced to one-half of the original pressure (see figure). This is followed by a constant volume cooling till its pressure is reduced to one-fourth of the initial value (B \rightarrow C). Then it is restored to its initial state by a reversible adiabatic compression (C to A). The net work done by the gas is equal to :

JEE 2019

