

Complex Numbers

Q.No.1:

If z is a complex number of unit modulus and argument θ , then arg $\left(\frac{1+z}{1+z}\right)$

equals:

JEE 2013

A. $-\theta$ **B.** $\frac{\pi}{2} - \theta$ **C.** θ **D.** $\pi - \theta$

Q.No.2: A complex number z is said to be unimodular if |z| = 1. Suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1z_2}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a : **JEE 2015**

- **A.** straight line parallel to x-axis
- **B.** straight line parallel to *y*-axis
- C. circle of radius 2
- **D.** circle of radius $\sqrt{2}$

Q.No.3: A value of θ for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary, is : **JEE 2016 A.** $\frac{\pi}{6}$ **B.** $\sin^{-1} \left(\frac{\sqrt{3}}{4}\right)$ **C.** $\sin^{-1} \left(\frac{1}{\sqrt{3}}\right)$ **D.** $\frac{\pi}{3}$ **Q.No.4:** Let ω be a complex number such that $2\omega + 1 = z$ where $z = \sqrt{-3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then k is equal to : **A.** -z **B.** z **C.** -1**D.** 1

Q.No.5: If $a, \beta \in C$ are the distinct roots, of the equation $x^2 - x + 1 = 0$, then $a^{101} + \beta^{107}$ is equal to : **JEE 2018**

- **A.** 1
- **B.** 2
- **C.** -1
- **D.** 0

Q.No.6: Let $A = \left\{ \theta \in \left(-\frac{\pi}{2}, \pi\right) : \frac{3+2i \sin \theta}{1-2i \sin \theta} \text{ is purely imaginary} \right\}$. Then the sum of the elements in A is: **A.** $\frac{5\pi}{6}$ **B.** Π **C.** $\frac{3\pi}{4}$ **D.** $\frac{2\pi}{3}$

Q.No.7: Let *a* and β be two roots of the equation $x^2 + 2x + 2 = 0$, then $a^{15} + \beta^{15}$ is equal to: **JEE 2019**

- **A.** -256
- **B.** 512
- **C.** -512
- **D.** 256

Q.No.8: Let z_0 be a root of the quadratic equation, $x^2 + x + 1 = 0$. If

JEE 2019

 $z = 3 + 6iz_0^{81} - 3iz_0^{93}$, then arg z is equal to: A. $\frac{\pi}{4}$ B. $\frac{\pi}{6}$ C. $\frac{\pi}{3}$ D. 0

Q.No.9: Let z_1 and z_2 be any two non-zero complex numbers such that $3 |z_1| = 4 |z_2|$. If $z = \frac{3z_1}{2z_2} + \frac{2z_2}{3z_1}$ then: **A.** Re(z) = 0 **B.** $|z| = \sqrt{\frac{5}{2}}$ **C.** $z = \frac{5}{2}\cos\theta + \frac{(3\sin\theta)}{2}i$ **D.** Im(z) = 0

Q.No.10: Let
$$z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$$
. If R(z) and I(z) respectively
denote the real and imaginary parts of z, then : **JEE 2019**
A. I(z) = 0
B. R(z) > 0 and I(z) > 0
C. R(z) < 0 and I(z) > 0
D. R(z) = -3