

JEE Main 25 Jan 2023(First Shift)

Total Time: 180

Total Marks: 300.0

Solution 1

Frequency of modulating wave = 5 kHz

Bandwidth = Twice the frequency of modulating signal
= 2 × 5 kHz
= 10 kHz

Hence, the correct answer is option (3).

Solution 2

$$\lambda_0 = rac{h}{\sqrt{2m[e(20 imes10^3)]}}$$

$$\lambda_{
m new} = rac{h}{\sqrt{2m[e(40 imes10^3)]}} = rac{\lambda_0}{\sqrt{2}}$$

Hence, the correct answer is option (3).

Solution 3

$$\because v_{
m ms} = \sqrt{rac{3RT}{M}}$$

$$\therefore v_{\rm ms} \propto \sqrt{T}$$

Hence, the correct answer is option (1).

$$y_5 = 5 \, \mathrm{cm}, \ D = 1 \, \mathrm{m}, \ \lambda = 600 \, \mathrm{nm}$$

$$\because \frac{5\lambda D}{d} = \frac{5}{100}$$

$$\therefore d = \frac{5 \times 600 \times 10^{-9} \times 1 \times 100}{5}$$

$$=6\times10^{-5}~\mathrm{m}$$

$$=60~\mu\mathrm{m}$$

Hence, the correct answer is option (2).

Solution 5

- (A) Surface tension : $kg s^{-2}$ (IV)
- (B) Pressure : $kg m^{-1}s^{-2}$ (III)
- (C) Viscosity: $kg m^{-1}s^{-1}$ (I)
- (D) Impulse : $kg ms^{-1}$ (II)

Hence, the correct answer is option (3).

Solution 6

From Newton's law of cooling.

$$\frac{dT}{dt} = -k(T - T_s)$$

Case I: $dT = 12^{\circ}C$, dt = 2 min

$$rac{12}{2} = -k igl[92 - 22^{lpha} igr] = -k \ 70 \ldots igl(1 igr)$$

Case II : $dT = 6^{\circ}$ C

$$rac{6}{dt} = -k \left[72 - 22
ight] = -k50 \quad \ldots \left(2
ight)$$

From
$$(1)$$
 and (2)

$$dt = 1.4 \text{ min}$$

Hence, the correct answer is option (2).

$$T=2\pi\sqrt{rac{l}{g}}$$

g = acceleration due to gravity

On earth's surface $g = \frac{Gm}{R^2}$

At height R, $g_R = \frac{Gm}{4R^2}$

$$g_R = rac{g}{4}$$

Time period at height $R = 2\pi \sqrt{\frac{l}{g_R}} = 2 \mathrm{T}$

Hence, the correct answer is option (3).

Solution 8

$$\eta = 1 - rac{T_{
m sink}}{T_{
m source}}$$

50% efficiency $\Rightarrow rac{1}{2} = 1 - rac{T_{
m sink}}{T_{
m source}}$

$$rac{1}{2}=1-rac{T_{
m sink}}{600}\Rightarrow T_{
m sink}=300$$

Now, 70% efficiency $\Rightarrow \frac{7}{10} = 1 - \frac{T_{\text{sink}}}{T_{\text{source}}}$

$$\frac{300}{T_{\text{source}}} = \frac{3}{10}$$

$$T_{
m source} = 1000~{
m K}$$

Hence, the correct answer is option (4).

Solution 9

Nuclear density is constant. $rac{
ho_{
m oxygen}}{
ho_{
m Helium}}=1$

$$rac{
ho_{
m oxygen}}{
ho_{
m Helium}}=1$$

Hence, the correct answer is option (3).

Solution 10

In car's frame, FBD of bob

where a_p = Pseudoforce or centrifugal force

$$heta= an^{-1}\left(rac{a_p}{ ext{g}}
ight)= an^{-1}\left(rac{ ext{v}^2}{Rg}
ight)= an^{-1}\left(rac{400}{40 imes10}
ight) \ heta=45^{ ext{o}}=rac{\pi}{4}$$

Hence, the correct answer is option (4).

Solution 11

Torque balance about 'O'

$$\frac{T}{2} imes 0.6 = 20 imes 0.5 + 80 imes 1$$

$$T \times 0.3 = 10 + 80 = 90$$

$$T = \frac{900}{3} = 300 \text{ N}$$

Hence, the correct answer is option (3).

Solution 12

$$v_{ ext{avg}} = rac{2x}{\left(rac{x}{v_1} + rac{x}{v_2}
ight)} = \left(rac{2v_1v_2}{v_1 + v_2}
ight)$$

Hence, the correct answer is option (3).

So, \vec{B} should be in x direction.

Hence, the correct answer is option (4).

Solution 14

$$m = 8.92 \times 10^{-3} \text{ kg}$$

Density = $8.92 \times 10^{3} \text{ kg/m}^{3}$
Volume = $\frac{8.92 \times 10^{-3}}{8.92 \times 10^{3}} = (10^{-6}) \text{m}^{3}$
Resistance = $\frac{3.4}{2} = 1.7 \Omega = \frac{\rho l^{2}}{A}$
 $1.7 = \frac{\rho l^{2}}{(Al)}$
 $\Rightarrow 1.7 = \frac{1.7 \times 10^{-8} \times l^{2}}{10^{-6}}$

$$\begin{array}{l} l^2=100\\ l=10\;\mathrm{m} \end{array}$$

Hence, the correct answer is option (3).

Solution 15

$$\omega_0=rac{1}{\sqrt{LC}}$$

If inductance becomes 2L and capacitance 8C $\omega=\frac{1}{\sqrt{2L\times 8C}}=\frac{1}{4\sqrt{LC}}$ $\omega=\left(\frac{\omega_0}{4}\right)$

Hence, the correct answer is option (2).

Number of turns per unit length = $\frac{1200}{2}$ = 600 Magnetic Intensity H = nI $H = 600 \times 2 = 1200$ A m⁻¹ = 1.2 × 10³ A m⁻¹

Hence, the correct answer is option (3).

Solution 17

Photodiodes are used in reverse bias, therefore, the assertion is incorrect. The reason is correct.

Hence, the correct answer is option (1).

Solution 18

Gravitational acceleration at a distance of r from centre of earth is given by $g'=rac{g}{R}r$

Where R is the radius of earth

$$egin{align} So, & rac{d^2r}{dt^2} = -rac{g}{R}r \ & \Rightarrow T = & 2\pi\sqrt{rac{R}{g}} = 2\pi\sqrt{rac{6400000}{10}} \ & = & 2\pi imes 800~{
m sec} \ & = & 5024~{
m sec} \ & = & 1~{
m hour} ~24~{
m minutes} ~\left({
m approx.}
ight) \ \end{array}$$

Hence, the correct answer is option (4).

Solution 19

$$c = \frac{\varepsilon_0 A}{(d-t) + \frac{t}{K}}$$

$$= \frac{K\varepsilon_0 A}{Kd - t + (K-1)}$$

$$= \frac{5\varepsilon_0 \times 40 \times 10^{-4}}{5 \times 2 \times 10^{-3} - 1 \times 10^{-3} (5-1)}$$

$$= \frac{20 \varepsilon_0}{6}$$

$$= \frac{10 \varepsilon_0}{3}$$

Hence, the correct answer is option (2).

$${
m A}
ightarrow B_0=rac{-\mu_{ heta}I}{4\pi r}+rac{\mu_{ heta}I}{2r}-rac{\mu_{ heta}I}{4\pi r}$$

$$B_0=rac{\mu_{ heta}I}{2\pi r}\left(\pi-1
ight)$$

$$A \to III$$

$$\mathrm{B}
ightarrow B_0 = rac{\mu_{ heta}I}{4\pi\mathrm{r}} + rac{\mu_{ heta}I}{2\mathrm{r}} + rac{\mu_{ heta}I}{4\pi\mathrm{r}}$$

$$B_0 = rac{\mu_{ heta} ext{I}}{4\pi ext{r}} \left(\pi + 2
ight)$$

$$\mathrm{B}
ightarrow \mathrm{I}$$

$$\mathrm{C}
ightarrow B_0 = rac{\mu_{ heta}I}{4\pi r} + rac{\mu_{ heta}I}{4r} + 0$$

$$B_0 = rac{\mu_{ heta} ext{I}}{4\pi ext{r}} \left(\pi + 1
ight)$$

$$\mathrm{C} o \mathrm{IV}$$

$$\mathrm{D.}
ightarrow B_0 = rac{\mu_{ heta} \mathrm{I}}{4r}$$

$$\mathrm{D} \to \mathrm{II}$$

Hence, the correct answer is option (3).

Solution 21

Work done = $\Delta K.E$

$$\therefore \int F. \, dx = \frac{1}{2} mv^2 = E$$

$$\therefore E = \int_{0}^{x} 2\cos\left(kx\right) dx$$

$$E = \frac{2}{k} [\sin kx]_0^x$$

$$=\frac{2}{k}\sin kx$$

$$=\frac{2\sin\theta}{k}$$

So, the value of n is 2.

Solution 22

$$egin{align} Y &= rac{F}{\Delta l} imes \left(rac{l(4)}{\pi d^2}
ight) \ &= ext{(slope)} rac{\left(62.8 imes 10^{-2}
ight)(4)}{\pi \left(4 imes 10^{-3}
ight)^2} \end{split}$$

$$Y=(1) imes 5 imes 10^4~\mathrm{N/m^2}$$

So, the value of x is 5.

Let *R* is the range and T be the time of motion inside the plate.

$$\therefore R = vT$$

and,
$$\tan \theta = \frac{v}{u}$$

$$= \frac{\left(\frac{eE}{m}\right)T}{u}$$

$$=\frac{\frac{eE}{m}\left(\frac{R}{u}\right)}{u}$$

$$=\frac{eER}{mu^2}$$

$$=\frac{eER}{2(K.E.)}$$

$$= \frac{(e) \times (10) \times (10 \times 10^{-2})}{2 \times (0.5 \text{ eV})}$$

$$=1$$

$$\therefore \tan \theta = 1$$

$$heta = 45^{\circ}$$

Solution 24

: For maximum amplitude of current, circuit should be at resonance.

$$\therefore X_L = X_C$$

$$\omega L = rac{1}{\omega C}$$

$$L=rac{1}{\omega^2 C}$$

$$=\frac{1}{{{{{\left({2\pi \times 2\times 10^3} \right)}^2}\times 62.5\times 10^{-9}}}}$$

 $=100~\mathrm{mH}$

Solution 25

Equivalent circuit can be redrawn as

$$\therefore R_{AB} = 10 \ \Omega$$

$$\Delta x = rac{\lambda}{2\pi} imes \left(rac{\pi}{3}
ight) = \left(rac{\lambda}{6}
ight)$$

$$\Rightarrow rac{\lambda}{6} = 6 ext{ m}$$

$$\lambda = 36 \text{ m}$$

$$U = f\lambda = 500 \text{ Hz} \times 36$$

$$=18000\;\mathrm{m/s}$$

$$=18 \, \mathrm{km/s}$$

$$egin{align} I_{AB} &= I_{cm} + M \ imes \left(rac{2}{3}R
ight)^2 \ &= rac{1}{2}MR^2 + rac{4}{9}MR^2 \ &= rac{(9+8)MR^2}{18} = \left(rac{17}{18}
ight)MR^2 \ &rac{l_{AB}}{l_{cm}} = rac{rac{17}{18}}{rac{1}{2}} = \left(rac{17}{9}
ight) \ \end{array}$$

Value of x = 17

$$\sin i = \frac{1}{\sqrt{2}} = 45^{\circ}$$

$$\Rightarrow$$
 at point $\left(1\right)$

$$\mu \sin r = \sin i = \frac{1}{\sqrt{2}}$$

$$\sin r = rac{1}{2} \, \Rightarrow r = 30^{\circ}$$

Lateral displacement

$$=rac{\mathrm{t}}{\mathrm{cos}\;\mathrm{r}}\mathrm{sin}\;\left(15^{\mathrm{o}}
ight)\;=\;rac{\sqrt{3}}{\left(rac{\sqrt{3}}{2}
ight)} imes0.26$$

$$= 2 \times 0.26$$

$$= 0.52 \text{ cm}$$

$$= 52 \times 10^{-2} \mathrm{~cm}$$

Solution 29

$$\overrightarrow{P}=3\hat{i}\ +\sqrt{3}\hat{j}+2\hat{k}$$

$$\overrightarrow{Q}=4\hat{i}+\sqrt{3}\hat{j}+2.5\hat{k}$$

$$\overrightarrow{P} imes \overrightarrow{Q} = egin{bmatrix} \hat{i} & \hat{j} & \hat{k} \ 3 & \sqrt{3} & 2 \ 4 & \sqrt{3} & 2.5 \ \end{pmatrix}$$

$$\hat{i} = \hat{i} \left(rac{\sqrt{3}}{2}
ight) - \hat{j} \left(-rac{1}{2}
ight) + \hat{k} \left(-\sqrt{3}
ight)$$

$$=rac{\sqrt{3}}{2}\hat{i}+rac{\hat{j}}{2}-\sqrt{3}\hat{k}$$

$$\left|\overrightarrow{P} imes\overrightarrow{Q}
ight|=\sqrt{rac{3}{4}+rac{1}{4}+3}=2$$

Unit vector along
$$\overrightarrow{P} \, imes \, \overrightarrow{ ext{Q}} = rac{1}{4} \left(\sqrt{3 \, \hat{i}} + \hat{j} - 2 \sqrt{3} \hat{k}
ight)$$

$$x = 4$$

Solution 30

Transition, n = 3 to n = 2

$$rac{1}{\lambda_0} = R\left(rac{1}{4} - rac{1}{9}
ight) = \left(rac{5R}{36}
ight) \; \ldots \left(1
ight)$$

For transition from, n = 4 to n = 2

$$rac{1}{\lambda} = R\left(rac{1}{4} - rac{1}{16}
ight) = \left(rac{3}{16}R
ight)\;\ldots\left(2
ight)$$

Taking ratio of (1) and (2)

$$\frac{\lambda}{\lambda_0} = \frac{5}{36} \times \frac{16}{3} = \left(\frac{20}{27}\right)$$

$$\lambda = \frac{20}{27} \lambda_0$$

$$x = 27$$

Solution 31

Hence, the correct answer is option (2).

Solution 32

Number of X particles = $4 imes frac{1}{8} + 1 = 1.5$

Number of Y particles =
$$6 \times \frac{1}{3} \times \frac{1}{2} = 1$$

 \therefore Empirical formula = $X_{1.5}Y_1 = X_3Y_2$

Disclaimer: None of the options matches with the correct answer.

Solution 33

$$\mathrm{P_4} + 8\,\mathrm{SOCl_2} \rightarrow 4\,\mathrm{PCl_3} + 4\,\mathrm{SO_2} + 2\mathrm{S_2\,Cl_2}$$

$$PCl_3 \xrightarrow{\mathrm{Hydrolysis}} H_3 PO_3 \\ \text{(B)}$$

Dibasic acid

Hence, the correct answer is option (2).

Solution 34

$$egin{aligned} ext{Molarity of H_2O_2 sol}^n &= rac{ ext{volume strength}}{11.2} \ &= rac{25}{11.2} = 2.23 \ ext{M} \end{aligned}$$

$$\therefore$$
 amount of H_2O_2 in one litre = $2.23 \times 34 = 75$ gm

Hence, the correct answer is option (4).

Solution 35

Hence, the correct answer is option (2).

$$egin{align} r_{_{Li}2+} &= r_0 imes rac{2^2}{3} = x \Rightarrow r_0 = rac{3x}{4} \ r_{Be^{3+}} &= r_0 imes rac{3^2}{4} \ r_{_{Be}3+} &= rac{3x}{4} imes rac{3^2}{4} = rac{27x}{16} \ \end{array}$$

Hence, the correct answer is option (3).

Solution 37

In the extraction of copper FeO is removed as slag FeSiO $_3$ Hence the reaction CaO + SiO $_2$ \rightarrow CaSiO $_3$ does not occur during extraction of copper.

Hence, the correct answer is option (1).

Solution 38

Η

OH

Hence, the correct answer is option (1).

Solution 39

An antibiotic inhibit the growth or survival of microorganism. Except (1) all the statement are correct.

Hence, the correct answer is option (1).

Solution 40

Elements		Colour imparted to flame		
A.	K	II.	Violet	
B.	Ca	I.	Brick Red	
C.	Sr	IV.	Crimson Red	
D.	Ва	III.	Apple Green	

Hence, the correct answer is option (1).

Solution 41

Aryl halides having E.W.G at o-or p-position have greater rate than the m-isomers towards nucleophilic aromatic substitution. Hence, the correct answer is option (2).

Solution 42

Hence, the correct answer is option (2).

Acetal/Ketal are known to be quite stable under basic conditions but readily hydrolyse to the corresponding carbonyl compound (aldehyde/ketone) and alcohol under acidic condition.

Hence, the correct answer is option (4).

Solution 44

Correct stability order of butane is Anti > Gauche > Partially eclipsed > Fully eclipsed.

Hence, the correct answer is option (1).

Solution 45

The correct order of basic strength in aqueous medium is $Me_2NH > MeNH_2 > Me_3N > NH_3$

Hence, the correct answer is option (1).

Solution 46

$$ext{Ca}\left(ext{OH}
ight)_2 + 2\, ext{NH}_4\, ext{Cl}
ightarrow ext{CaCl}_2 + 2\, ext{NH}_3 + 2 ext{H}_2 ext{O}_{(B)}$$

$$NH_3 + H_2O + \underset{Excess}{CO_2} \rightarrow NH_4 \underset{(C)}{HCO_3}$$

$$\mathrm{NH_4\,HCO_3} + \mathrm{NaCl} \ \rightarrow \mathrm{NH_4\,Cl} + \mathrm{NaHCO_3}$$

Hence, the correct answer is option (2).

Solution 47

Cations	Group reagents
A. Pb ²⁺ , Cu ²⁺	(i) H ₂ S gas in presence of dilute HCl
B. Al ³⁺ , Fe ³⁺	(iii)NH ₄ OH in presence of NH ₄ Cl
C. Co ²⁺ , Ni ²⁺	(iv)H ₂ S in presence of NH ₄ OH
D. Ba ²⁺ , Ca ²⁺	(ii) (NH ₄) ₂ CO ₃ in presence of NH ₄ OH

Hence, the correct answer is option (1).

Solution 48

The correct plot for enzyme catalysed reaction is

Hence, the correct answer is option (4).

Solution 49

Hence, the correct answer is option (2).

Solution 50

Electron gain	He	Ne	Ar	Kr	Xe
Enthalpy/kJ	40	110	06	06	77
mol ^{−1}	40	110	90	96	//

Hence, correct order of positive electron gain enthalpy is He < Xe < Kr < Ne.

Hence, the correct answer is option (1).

$$\begin{split} \pi &= CRT \\ \pi &= \frac{mole}{volume} \times RT \\ \pi &= \frac{mole}{volume} \times \frac{mw}{mw} \times RT \\ \pi &= \frac{mass}{volume} \times \frac{RT}{mw} \\ \pi &= \frac{RT}{mw} \times C \left(gm \ lit^{-1} \right) \\ slope &= \frac{RT}{mw} = 6 \times 10^{-4} \\ mw &= 41500 \end{split}$$

m.eq of NaOH = m.eq of monobasic acid 25 × 0.24 × 1 = 1 × V × molarity Molarity = $\frac{1.21\times10^3}{24.2}$ = 50 M \therefore V = $\frac{25\times0.24}{50}$ = 0.12 mL = 12×10^{-2} mL

Solution 53

Species	Magnetic property
[Ni(CN) ₄] ²⁻	Diamagnetic
[Ni(CO) ₄]	Diamagnetic
$[NiCl_4]^{2-}$	Paramagnetic
[FeCN) ₆] ⁴⁻	Diamagnetic
[Fe(CN) ₆] ³⁻	Paramagnetic
$Fe(H_2O)_6]^{2+}$	Paramagnetic
$[Cu(NH_3)_4]^{2+}$	Paramagnetic

The number of paramagnetic species is 4.

Solution 55

$$S\% = \frac{32}{233} \times \frac{1.4439}{0.471} \times 100 = 42\%$$

Solution 56

Time taken for 75% completion = 2 × $t_{\frac{1}{2}}$ = 2 × 30 = 60 min

Solution 57

$$\begin{array}{ll} \text{Ion} & \text{Spin only magnetic moment} \\ \mathsf{V}^{3+} & \sqrt{8} \\ \mathsf{Cr}^{3+} & \sqrt{15} \\ \mathsf{Fe}^{2+} & \sqrt{24} \\ \mathsf{Ni}^{3+} & \sqrt{15} \end{array}$$

The number of metal ions which have similar value of spin only magnetic moment in gaseous state is $\underline{\mathbf{2}}$.

Solution 58

Reaction at anode:
$$\frac{1}{2}H_2 \rightarrow H^+ + e^-$$

Reaction at cathode :
$$\mathrm{Fe}^{3+}_{(aq)} + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}_{(aq)}$$

$$ext{E}_{ ext{cell}} = ext{E}_{ ext{cell}}^0 - rac{0.0591}{1} ext{log} \left[rac{[ext{H}^+][ext{Fe}^{2+}]}{[ext{Fe}^{3+}][ext{pH}_2]^{rac{1}{2}}}
ight]$$

$$0.712 = 0.771 - rac{0.0591}{1} \mathrm{log}\left(rac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}
ight)$$

$$-0.059 = -0.0591 \, \log \left(rac{\mathrm{[Fe^{2+}]}}{\mathrm{[Fe^{3+}]}}
ight)$$

$$\therefore \frac{[\mathrm{Fe}^{2+}]}{[\mathrm{Fe}^{3+}]} = 10^1 = 10$$

Solution 59

The structure of ozone molecule is drawn below.

The total number of lone pairs of electrons on oxygen atoms of ozone is 6.

Solution 60

Weight of extra water he would need to perspire

$$= \frac{1800}{2} \times \frac{18}{45}$$
= 20 × 18 = 360 gm

$$\overrightarrow{x}=10$$
 and $\sigma^2=4$, No. of student $=N\Big(\mathrm{let}\Big)$

$$\therefore \ rac{\sum x_i}{N} = 10 \ ext{and} \ rac{\sum x_i^2}{N} - \left(10
ight)^2 = 4$$

Now if one of x_i is changed from 8 to 12, we have

$$egin{aligned} dots & rac{\sum x_i + 4}{N} = 10 \ + rac{4}{N} = 10.2 \ & \Rightarrow N = 20 \ & ext{and } \sigma_{ ext{new}}^2 = rac{\sum x_i^2 - (8)^2 + (12)^2}{20} - (10.2)^2 \ & = rac{\sum x_i^2}{20} + rac{144 - 64}{20} - (10.2)^2 \ & = 104 + 4 - (10.2)^2 \end{aligned}$$

Hence, the correct answer is option (3).

=108-104.04=3.96

Solution 62

Making truth table $(\text{Let}(p \land \sim q) \Rightarrow (p \Rightarrow \sim q) = E)$

р	q	~p	~q	<i>p</i> ∧ ~ <i>q</i>	$p \Rightarrow \sim q$	E
T	T	F	F 🦯	F	F	T
Т	F	F	T	T	Т	Т
F	Т	T	F	F	Т	Т
F	F	_ T (VI.	F	Т	Т

 \therefore E is a tautology.

Hence, the correct answer is option (4).

As A and B satisfy both line and circle we have $a = 0 \Rightarrow A(0, 0)$ and $\beta = 1$ i.e. B(1, 1)

Centre of circle as AB diameter is $(\frac{1}{2}, \frac{1}{2})$ and radius = $\frac{1}{\sqrt{2}}$

 \therefore For image of $\left(\frac{1}{2}; \frac{1}{2}\right)$ in x + y + z we get

$$\frac{x-\frac{1}{2}}{1} = \frac{y-\frac{1}{2}}{1} = \frac{-2(3)}{2}$$

$$\Rightarrow \text{Image } \left(-\frac{5}{2}, -\frac{5}{2}\right)$$

: Equation of required circle

$$\left(x + \frac{5}{2}\right)^2 + \left(y + \frac{5}{2}\right)^2 = \frac{1}{2}$$

$$\Rightarrow x^2 + y^2 + 5x + 5y + \frac{50}{4} - \frac{1}{2} = 0$$

$$\Rightarrow x^2 + y^2 + 5x + 5y + 12 = 0$$

Hence, the correct answer is option (1).

Solution 64

Let,

$$P=(2\lambda+1,\;\lambda+3,\;2\lambda+2)\; ext{and}\; \mathrm{Q}\Big(\mu+2,\;2\mu+2,\;3\mu+3\Big)$$

d. r's of PQ
$$=$$
 $<2\lambda-\mu-1,~\lambda-2\mu+1,~2\lambda-3\mu-1>$

$$\therefore \frac{2\lambda - \mu - 1}{1} - \frac{\lambda - 2\mu - 1}{-1} = \frac{2\lambda - 3\mu - 1}{-2}$$

$$\therefore -2\lambda + \mu + 1 = \lambda - 2\mu + 1 \text{ and } -2\lambda + 4\mu - 2 = -2\lambda + 3\mu + 1$$

$$\Rightarrow 3\lambda - 3\mu = 0$$
 and $\mu = 3$

$$\lambda = \pm 3 \text{ and } \mu = 3$$

$$\therefore P = (7, 6, 8) \text{ and } Q(5, 8, 12)$$

$$\therefore |PO| = \sqrt{2^2 + 2^2 + 4^2} = \sqrt{24} = 2\sqrt{6}$$

Hence, the correct answer is option (2).

$$egin{aligned} g(x) &= f(-x) - f\left(x
ight) \ &= rac{1}{1 - e^x} - rac{1}{1 - e^{-x}} \ &= rac{1}{1 - e^x} - rac{e^x}{e^x - 1} \ &= rac{1 + e^x}{1 - e^x} \ g'(x) &= rac{(1 - e^x)e^x - (1 + e^x)(-e^x)}{(1 - e^x)^2} \ &= rac{e^x - 2e^x + e^x + 2e^x}{(1 - e^x)^2} > 0 \end{aligned}$$

So both the statements are correct. Hence, the correct answer is option (2).

Solution 66

Given system of equations
$$ax + 2ay - 3az = 1$$
 $(2a + 1)x + (2a + 3)y + (a + 1)z = 2$ $(3a + 5)x + (a + 5)y + (a + 2)z = 3$ Let $A = \begin{vmatrix} a & 2a & -3a \\ 2a + 1 & 2a + 3 & a + 1 \\ 3a + 5 & a + 5 & a + 2 \end{vmatrix}$ $= a \begin{vmatrix} 1 & 0 & 0 \\ 2a + 1 & 1 - 2a & 7a + 4 \\ 3a + 5 & -5a - 5 & 10a + 17 \end{vmatrix}$ $= a \left(15a^2 + 31a + 37\right)$ Now $A = 0$ $\Rightarrow a = 0$ So, $S_1 = R - \{0\}$ and at $a = 0$ System has infinite solution but $a \in R - \{0\}$ $\therefore S_2 = \phi$

Hence, the correct answer is option (2).

$$f\left(x
ight) =\int_{0}^{2}e^{\leftert x-t
ightert }dt$$

For x > 2

$$f(x) = \int_0^2 e^{x-t} dt = e^x (1 - e^{-2}).$$

For x < 0

$$f(x) = \, \int_0^2 e^{t-x} dt = e^{-x} \left(e^2 - 1
ight)$$

For $x \in [0,2]$

$$f(x)=\int_{0}^{x}e^{x-t}dt\in\int_{x}^{2}e^{t-x}dt$$

$$=e^{2-x}+e^x-2$$

For x > 2

$$\left. f\left(x\right) \right| _{\min }=e^{2}-1$$

For x < 0

$$\left. f\left(x
ight) \right| _{\min }=e^{2}-1$$

For $x \in [0, 2]$

$$\left| f\left(x\right) \right| _{\min }=2\left(e-1\right)$$

Solution 68

$$y = rac{1 - x^{32}}{1 - x} = 1 + x + x^2 + x^3 + ... + x^{31}$$

$$y' = 1 + 2x + 3x^2 + \dots + 31x^{30}$$

$$y'(-1) = 1 - 2 + 3 - 4 + ... + 31 = 16$$

$$y'(x) = 2 + 6x + 12x^2 + ... + 31.30x^{29}$$

$$y'(-1) = 2 - 6 + 12...31.30 = 480$$

$$y'(-1) - y'(-1) = -496$$

Hence, the correct answer is option (1).

$$f'(x) = 8x^3 - 36x + 8$$
 $= 4\Big(2x^3 - 9x + 2\Big)$
 $= 4\Big(x - 2\Big)\Big(2x^2 + 4x - 1\Big)$
 $= 4\Big(x - 2\Big)\Big(x - \frac{-2 + \sqrt{6}}{2}\Big)\Big(x - \frac{-2\sqrt{6}}{2}\Big)$
Local maxima occurs at $x = \frac{-2 + \sqrt{6}}{2} = x_0$
 $f(x_0) = 12\sqrt{6} - \frac{33}{2}$

Hence, the correct answer is option (1).

Solution 70

$$\begin{split} I &= \lim_{n \to \infty} \frac{(1 + 2 + 3 + \ldots + 3n) - 2(3 + 6 + 9 + \ldots + 3n)}{\sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}} \\ &= \lim_{n \to \infty} \frac{\frac{3n(3n+1)}{2} - 6\frac{n(n+1)}{2}}{\left(\sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}\right)} \\ &= \lim_{n \to \infty} \frac{3n(n-1)\left[\sqrt{2n^4 + 4n + 3} + \sqrt{n^4 + 5n + 4}\right]}{2[(2n^4 + 4n - 3) - (n^4 + 5n + 4)]} \\ &\lim_{n \to \infty} \frac{3.1.\left(1 - \frac{1}{n}\right)\left[\sqrt{2 + \frac{4}{n^3} + \frac{3}{n^4}} + \sqrt{1 + \frac{5}{n^3} + \frac{4}{n^4}}\right]}{2\left[1 - \frac{1}{n^3} - \frac{7}{n^4}\right]} \\ &= \frac{3\left(\sqrt{2} + 1\right)}{2} \end{split}$$

Hence, the correct answer is option (2).

$$y^2 = \frac{x}{2} \Rightarrow \text{tangent } y = mx + \frac{1}{8m}.$$

$$y^2 = x - 1 \Rightarrow ext{tangent} \,\, y = m \Big(x - 1 \Big) + rac{1}{4m}$$

For common tangent $\frac{1}{8m} = -m + \frac{1}{4m}$

$$\Rightarrow 1 = -8m^2 + 2$$

$$\therefore$$
 m > 0 \Rightarrow m = $\frac{1}{2\sqrt{2}}$

$$\Rightarrow$$
 Common tangent is $y = \frac{x}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$

$$\Rightarrow x - 2\sqrt{2} + 1 = 0$$

Distance of point $\left(6,-2\sqrt{2}\right)$ from commin tangent =5

Hence, the correct answer is option (4).

Solution 72

$$|A| = rac{1}{\log x \log y \log z} egin{array}{c|c} \log x & \log y & \log z \ \log x & 2 \log y & \log z \ \log x & \log y & 3 \log z \ \end{array} = egin{array}{c|c} 1 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 3 \ \end{array} = 2$$
 $\Rightarrow \left|\operatorname{adj}\left(\operatorname{adj} A^{2}\right)\right| = \left|\operatorname{adj}A\left(^{2}\right)\right|^{2} = \left(\left|A^{2}\right|^{2}\right)^{2} = \left|A\right|^{8} = 2^{8}$

Hence, the correct answer is option (3).

$$egin{aligned} f\left(x
ight) &= \int rac{2x}{(x^2+1)(x^2+3)} \, dx \ \mathrm{Put} \; x^2 &= t \Rightarrow 2x dx = dt \ f\left(x
ight) &= \int rac{dt}{(t+1)(t+3)} = \int rac{dt}{(t+2)^2-1} = rac{1}{2} \mathrm{log_e} \left| rac{t+1}{t+3} + C
ight| \ f\left(x
ight) &= rac{1}{2} \mathrm{log_e} \left(rac{x^2+1}{x^2+3}
ight) + C \Rightarrow \ f\left(3
ight) &= rac{1}{2} \mathrm{log_e} \left(rac{10}{12}
ight) + C \ dots \; f\left(3
ight) &= rac{1}{2} \mathrm{log_e} \left(rac{10}{12}
ight) + C \
hooksymbol{\cdot} \; f\left(3
ight) &= rac{1}{2} \mathrm{log_e} \left(rac{x^2+1}{x^2+3}
ight) \Rightarrow \end{aligned}$$

$$f(4) = \frac{1}{2} (\log_e 17 - \log_e 19)$$

Hence, the correct answer is option (3).

Solution 74

Solution 75

$$x + y = 66$$
 $\frac{x+y}{2} \ge \sqrt{xy}$
 $\Rightarrow 33 \ge \sqrt{xy}$
 $\Rightarrow xy \le 1089$
 $\therefore M = 1089$
 $S: x(66 - x) \ge \frac{5}{9}.1089$
 $66x - x^2 \ge 605$
 $\Rightarrow x^2 - 66x + 605 \le 0$
 $\Rightarrow (x - 61)(x - 5) \le 0$
 $x \in [5, 61]$
 $A = \{6, 9, 12, \dots 60\}$
 $x(A) = 19$
 $x(S) = 57$
 $\therefore P(A) = \frac{1}{3}$

Hence, the correct answer is option (2).

$$\overrightarrow{b} \left(\overrightarrow{a} \cdot \overrightarrow{c} \right) - \overrightarrow{c} \left(\overrightarrow{a} \cdot \overrightarrow{b} \right) = \frac{\overrightarrow{b} - \overrightarrow{c}}{2}$$

$$\overrightarrow{a} \cdot \overrightarrow{c} = \frac{1}{2}, \ \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2}$$

$$\left(\overrightarrow{a} \times \overrightarrow{b} \right) \cdot \left(\overrightarrow{c} \times \overrightarrow{d} \right) = \left(\overrightarrow{b} \cdot \overrightarrow{d} \right) \left(\overrightarrow{a} \cdot \overrightarrow{c} \right) - \left(\overrightarrow{a} \cdot \overrightarrow{d} \right) \left(\overrightarrow{b} \cdot \overrightarrow{c} \right)$$

$$= \left(\overrightarrow{a} \cdot \overrightarrow{b} \right) \left(\overrightarrow{a} \cdot \overrightarrow{c} \right)$$

$$= \frac{1}{4}$$

Hence, the correct answer is option (1).

Solution 77

$$T_r = {}^{10}C_r x^r$$
Coefficient of $x^{10-r} = {}^{10}C_{10-r} = {}^{10}C_r$
 $\sum_{r=1}^{10} r^3 \Big(\frac{{}^{10}C_r}{{}^{10}C_{r-1}} \Big)^2$
 $= \sum_{r=1}^{10} r^3 \Big(\frac{11-r}{{}^{10}C_{r-1}} \Big)^2 \Rightarrow \sum r (11-r)^2$
 $\Rightarrow \sum r \left(121 + r^2 - 22r \right)$
 $\Rightarrow \sum 121r + \sum r^3 - 22 \sum r^2$
 $\Rightarrow 121 imes \frac{10 imes 11}{2} + \Big(\frac{10 imes 11}{2} \Big)^2 - 22 imes \Big(\frac{10 imes 11 imes 21}{6} \Big)$
 $= 6655 + 3025 - 8470$
 $= 1210$

Hence, the correct answer is option (1).

$$\frac{dy}{dx} = \frac{y}{x} \left(1 + xy^2 \left(1 + \log_e x \right) \right), \ y(1) = 3$$

$$\Rightarrow \frac{1}{y^3} \frac{dy}{dx} - \frac{1}{x} \cdot \frac{1}{y^2} = (1 + \ln x) - \frac{1}{y^2} = t$$

$$\Rightarrow \frac{2}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{dt}{dx} + \frac{t}{x} = 1 + \ln x$$

$$\Rightarrow \frac{dt}{dx} + \frac{2t}{x} = 2 (1 + \ln x)$$
IF = x^2

$$t \cdot x^2 = \int (1 + \ln x)x^2 dx$$

$$\Rightarrow -\frac{1}{y^2} \cdot x^2 = 2 \left[\frac{x^3}{3} (1 + \ln x) - \frac{x^3}{9} \right] + c$$

$$y(1) = 3$$

$$\Rightarrow c = -\frac{5}{9}$$

$$\therefore \frac{x^2}{y^2} = -2 \left(\frac{x^3}{3} (1 + \ln x) - \frac{x^3}{9} \right) + \frac{5}{9}$$

$$\Rightarrow \frac{y^2}{9} = \frac{x^2}{5 - 2x^3(2 + \ln x^3)}$$

Hence, the correct answer is option (3).

Solution 79

$$|z - z_1|^2 - |z - z_2|^2 = |z_1 - z_2|^2$$

 $\Rightarrow (x - 2)^2 + (y - 3)^2 - (x - 3)^2 - (y - 4)^2 = 1 + 1$
 $\Rightarrow -4x + 4 + 9 - 6y - 9 + 6x - 16 + 8y = 2$
 $\Rightarrow 2x + 2y = 14$
 $\Rightarrow x + y = 7$

Hence, the correct answer is option (3).

Let
$$\overrightarrow{b} = \mu \overrightarrow{a} + \lambda \hat{j}$$

Now $\overrightarrow{b} \cdot \overrightarrow{a} = 0$
 $\Rightarrow (\mu \overrightarrow{a} + \lambda \hat{j}) \cdot \overrightarrow{a} = 0$
 $\Rightarrow \mu |\overrightarrow{a}|^2 + 2\lambda = 0 \Rightarrow 6\mu + 2\lambda = 0$ (i)
 $\Rightarrow \overrightarrow{b} = \lambda (\overrightarrow{a} - 3\hat{j}) = \lambda (-\hat{i} - \hat{j} + \hat{k})$
 $\Rightarrow |\overrightarrow{b}| = |\overrightarrow{a}| \Rightarrow \lambda = \pm \sqrt{2}$
 $\therefore \overrightarrow{b} = -\sqrt{2} (-\hat{i} - \hat{j} + \hat{k})$
 $\therefore 3\overrightarrow{a} + \sqrt{2\overrightarrow{b}} = 3 (-\hat{i} + 2\hat{j} + \hat{k}) - 2 (-\hat{i} - \hat{j} + \hat{k}) = -\hat{i} + 8\hat{j} + \hat{k}$
 \therefore projection $3\sqrt{2}$

Hence, the correct answer is option (4).

Solution 81

Let the equation of the plane is
$$(x - 2y - z - 5) + \lambda(x + y + 3z - 5) = 0$$
 ...(i) \because it's parallel to the line $x + y + 2z - 7 = 0 = 2x + 3y + z - 2$ So, vector along the line $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix}$ = $-5\hat{i} + 3\hat{j} + \hat{k}$ \because Plane is parallel to line $\therefore -5(1 + \lambda) + 3(-2 + \lambda) + 1(-1 + 3\lambda) = 0$ $\lambda = 12$ So, by (i) $13x + 10y + 35z = 65$ $\therefore a = 13, b = 10, c = 35$ and $d = \frac{26 + 20 - 35 + 16}{\sqrt{6}} = 9$

$$a=6,~e=rac{\sqrt{5}}{2}$$

$$\therefore \ rac{5}{4}=1+rac{b^2}{36}\Rightarrow b^2=36 imesrac{1}{4}=9 heta$$

$$\therefore H : \frac{x^2}{36} - \frac{y^2}{9} = 1$$

$$P(6 \sec \theta, 3 \tan \theta)$$

Slope of tanfent at $P = \frac{6 \sec \theta}{4 \times 3 \tan \theta}$

So,
$$\frac{1}{2\sin\theta} \times -\sqrt{2} = -1 \Rightarrow \sin\theta = \frac{1}{\sqrt{2}}$$

$$Q=45^{\circ}\Big({
m for\ first\ quad}\Big)$$

$$\therefore \ P = \left(6\sqrt{2},\ 3\right) \ ext{and} \ ext{N} \ : \ \sqrt{2 ext{x}} \ + y = 15$$

$$\therefore Q(0, 15) \text{ Now}, PQ^2 = 72 + 144 = 216$$

$$S = \left\{a: \log_2\left(9^{2a-4} + 13
ight) - \log_2\left(rac{5}{2}.3^{2a-4} + 1
ight) = 2
ight\}$$

So,

$$rac{9^{2a-4}+13}{rac{5}{2}3^{2a-4}+1}=4\Rightarrow 9^{2a-4}+13=103^{2a-4}+4$$

Let
$$3^{2a-4} = t$$
 then $t^2 - 10t + 9 = 0$

$$(t-9)(t-1)=0$$

$$\therefore 3^{2a-4} = 3^2 \text{ or } 3^{2a-4} = 3^{\underline{0}}$$

$$\therefore a=3, 2$$

Now equation

$$x^2 - 50x + 25\beta = 0$$

$$D \geq 0 \Rightarrow (50)^2 - 4 \times 25\beta \geq 0$$

$$eta \leq 25$$

$$\therefore$$
 Max. $\beta = 25$

Solution 84

$$f(x) = ax - 3$$

$$q(x) = x^b + c$$

$$\left(fog
ight)^{-1}=\left(rac{x-7}{2}
ight)^{rac{1}{3}}$$

$$\left(fog\right)^{-1}\left(x
ight)=\left(rac{x+3-ca}{a}
ight)^{rac{1}{b}}=\left(rac{x-7}{2}
ight)^{rac{1}{5}}$$

$$\Rightarrow a=2,\ b=3,\ c=5$$

$$fog\left(ac\right)+\left(gof\right)\left(b\right)$$

$$\therefore f(x) = 2x - 3$$

$$g\left(x\right) = x^3 + 5$$

$$fog\left(10
ight)+gof\left(3
ight)$$

$$= 2007 + 32$$

$$= 2039$$

Type	Numbers
5 <i>k</i>	5, 10, 15, 20, 25
5k + 1	1, 6, 11, 16, 21
5k + 2	2, 7, 12, 17, 22
5k + 3	3, 8, 13, 18, 23

5k + 4

4, 9, 14, 19, 24

To select x and y.

Case I: 1 of (5k + 1) and 1 of $(5k + 4) = 5 \times 5 = 25$

Case II: 1 of (5k + 2) and 1 of $(5k + 3) = 5 \times 5 = 25$

Case III: Both of type 5k (both cannot be same) = $5 \times 4 = 20$

Total = 120

Solution 86

Constant term in the expansion of

$$\left(2x+rac{1}{x^7}+3x^2
ight)^5$$

$$\frac{1}{x^{35}} (2x^8 + 1 + 3x^9)^5$$

$$\frac{1}{x^{35}} (1 + x^8 (3x + 2))^5$$

Term independent of x = coefficient of x^{35} in

$${}^{5}C_{4}ig(x^{8}\left(3x+2
ight)ig)^{4}$$

$$=$$
⁵ C_4 coefficient of x^3 in $(2+3x)^4$

$$=^5 \mathrm{C}_4 \times^4 \mathrm{C}_3(2)^1(3)^3$$

$$=5 imes 4 imes 2 imes 27$$

= 1080

Solution 87

Out of the given numbers one is (3k) type and 3 of (3k + 1) type and remaining 3 are (3k + 2) type Number of subsets of 1 element = 1 (1 of 3k type)

Number of subsets of 2 elements

1 of (3k + 1) type + 1 of (3k + 2) type = 9

Number of subsets of 3 elements

1 of 3k type + 1 of (3k + 1) type + 1 of (3k + 2) type = 9

3 of (3k + 1) type = 1

3 of (3k + 2) type = 1

Number of subsets of 4 elements

1 of 3k type + 3 of (3k + 1) type = 1

1 of 3k type + 3 of (3k + 2) type = 1

2 of (3k + 1) type + 2 of (3k + 2) type = 9

Number of subsets of 5 elements

1 of 3k + 2 of (3k + 1) type + 2 of (3k + 2) type = 9

Number of subsets of 6 elements

3 of (3k + 1) type + 3 of (3k + 2) type = 1

The set itself = 1

Total = 43

Solution 88

Case-I

$$-1 < x < 0$$

$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \pi + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}$$

$$\tan^{-1}\frac{2x}{1-x^2} = \frac{-\pi}{3}$$

$$2 an^{-1}x=rac{-\pi}{3}$$

$$\tan^{-1} x = \frac{-\pi}{6}$$

$$x=rac{-1}{\sqrt{3}}$$

Case - II

$$an^{-1} \frac{2x}{1-x^2} + an^{-1} \frac{2x}{1-x^2} = \frac{\pi}{3}$$

$$\tan^{-1} \frac{2x}{1-x^2} = \frac{\pi}{6}$$

$$2 an^{-1}x=rac{\pi}{6}$$

$$an^{-1} x = rac{\pi}{12}$$

$$x=2-\sqrt{3}$$

Sum =
$$\frac{-1}{\sqrt{3}} + 2 - \sqrt{3} = 2 - \frac{4}{\sqrt{3}}$$

$$\Rightarrow lpha = 2$$

$$a = A + 6d$$

$$b = A + 8d + 1$$

$$c = A + 16d + 2$$

$$\begin{vmatrix} a & 7 & 1 \\ 26 & 17 & 1 \end{vmatrix} = -70$$

$$c$$
 17 1

$$\begin{vmatrix} A+6d & 7 & 1 \\ 2A+16d+2 & 17 & 1 \\ A+16d+2 & 17 & 1 \end{vmatrix} = -70$$

$$\begin{vmatrix} R_3 \to R_3 - R_2, \ R_2 \to R_2 - R_1 \end{vmatrix} = -70$$

$$\begin{vmatrix} A+6d & 7 & 1 \\ A+10d+2 & 10 & 0 \\ -A & 0 & 0 \end{vmatrix} = -70$$

$$\Rightarrow A = -7$$

$$a = A+6d = 29 \Rightarrow d = 6$$

$$b = -7+48+1=42$$

$$c = -7+96+2=91$$

$$c-a-b=91-29-42=20$$

$$Sum = \frac{20}{2} \left[2 \times 20+19 \times \frac{6}{12} \right] = 10 \left[40+\frac{19}{2} \right] = 495$$

$$x^2+6=rac{5}{2}x^2\Rightarrow x=\pm 2$$

Area between P_1 and P_2

 $[\operatorname{Say} A_1]$

$$=\int\limits_{-2}^{2}\left(x^{2}+6
ight) -rac{5}{2}x^{2}dx$$

$$=2\int\limits_{0}^{2}{\left(6-rac{3}{2}x^{2}
ight)}dx=2{\left[6x-rac{x^{3}}{2}
ight]}_{0}^{2}=16$$

$$ax=rac{5}{2}x^2\Rightarrow x=0, rac{2a}{5}$$

Area between P_1 and y = ax

 $[\mathrm{Say}\ A_2]$

$$egin{align} &=\int\limits_0^{rac{2a}{5}}ax-rac{5}{2}x^2dx\ &=rac{ax^2}{2}-rac{5}{6}x^3\Big]_0^{rac{2a}{5}}\!:rac{2a^3}{75}\ &A_1=A_2\Rightarrowrac{2a^3}{75}=16\ &a^3=600 \end{gathered}$$