

JEE Main 24 June 2022(Second Shift)

Total Time: 180

Total Marks: 300.0

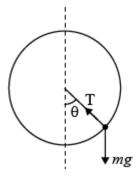
Solution 1

Velocity gradient = $\frac{dv}{dx}$

 $\Rightarrow ext{Dimensions} ext{ are } rac{\left[LT^{-1}
ight]}{\left[L
ight]} = \left[T^{-1}
ight]$

Decay constant λ has dimensions of $[T^{-1}]$ because of the relation $\frac{dN}{dt} = -\lambda N$ \Rightarrow Velocity gradient and decay constant have same dimensions.

Hence, the correct answer is option A.


Solution 2

We know that

$$T^2 \propto R^3$$

$$egin{aligned} &\Rightarrow \left(rac{T'}{T}
ight)^2 = \left(rac{3R}{R}
ight)^3 \ &\Rightarrow rac{T'}{T} = 3\sqrt{3} \ &\Rightarrow T' = 3\sqrt{3} ext{ years} \end{aligned}$$

Hence, the correct answer is option D.

At any θ : $T - mg \cos \theta = \frac{mv^2}{R}$ $\Rightarrow T = mg \cos \theta + \frac{mv^2}{R}$ Since *v* is constant, $\Rightarrow T$ will be minimum when $\cos \theta$ is minimum. $\Rightarrow \theta = 180^{\circ}$ corresponds to T_{minimum} .

Hence, the correct answer is option B.

Solution 4

According to given information :

$$rac{kQ^2}{L^2}=\mu mg$$

Putting the values, we get

L = 12 cm

Hence, the correct answer is option A.

Solution 5

Efficiency
$$\eta = 1 - \frac{T}{T_H}$$

= $1 - \frac{400}{1000}$
= 0.6
 $\Rightarrow 0.6 = \frac{W}{Q}$

 $\Rightarrow W = 0.6Q = 3000 \text{ kcal} = 12.6 \times 10^6 \text{ J}$

Hence, the correct answer is option C.

Solution 6

 $\omega_1 A_1 = \omega_2 A_2$

$$\Rightarrow \frac{A_1}{A_2} = \frac{\omega_2}{\omega_1}$$
$$= \sqrt{\frac{k_2}{m_2}} \times \sqrt{\frac{m_1}{k_1}} = \sqrt{\frac{9k}{100} \times \frac{50}{2k}} = \frac{3}{2}$$

Hence, the correct answer is option B.

Solution 7

 $\text{Req} = \frac{2 \times 4}{2+6} + 6 = \frac{22}{3}$

 \Rightarrow A and B are in parallel and C is in series.

Hence, the correct answer is option B.

Solution 8

Electromagnet requires high permeability and low retentivity.

Hence, the correct answer is option C.

Solution 9

$$\therefore r = \frac{mv}{qB} = \frac{\sqrt{2m(KE)}}{qB}$$
$$\Rightarrow r_1 : r_2 : r_3 = \frac{\sqrt{m_1}}{q_1} : \frac{\sqrt{m_2}}{q_2} : \frac{\sqrt{m_3}}{q_3}$$
$$= \frac{\sqrt{1}}{1} : \frac{\sqrt{2}}{1} : \frac{\sqrt{4}}{2}$$
$$= 1 : \sqrt{2} : 1$$

Hence, the correct answer is option D.

Solution 10

 $\begin{array}{l} X = |X_C - X_L| \\ \text{So, it can be zero if } X_C = X_L \\ \text{And, average power in ac circuit can be zero.} \end{array}$

Hence, the correct answer is option C.

Solution 11

For equilibrium

$$egin{aligned} &-rac{dU}{dr}=0=rac{10A}{r^{11}}-rac{5B}{r^6}\ &\Rightarrow r^5=rac{2A}{B}\ & ext{And}\ r=\left(rac{2A}{B}
ight)^rac{1}{5} \end{aligned}$$

Hence, the correct answer is option C.

Solution 12

Let time taken to ascent is t_1 and that to descent is t_2 . Height will be same so

$$egin{aligned} H &= rac{1}{2} imes 12t_1^2 = rac{1}{2} imes 8t_2^2 \ \Rightarrow rac{t_1}{t_2} &= rac{\sqrt{2}}{\sqrt{3}} \end{aligned}$$

Hence, the correct answer is option B.

Solution 13

$$heta_1 = rac{1}{2}lpha\left(2 imes 1-1
ight) = 5 \, \, \mathrm{rad}$$

 \Rightarrow a = 10 rad/sec²

So
$$heta_2 = rac{1}{2} imes lpha \ (2 imes 2 - 1) = 15 \, \, \mathrm{rad}$$

Hence, the correct answer is option B.

Solution 14

$$egin{aligned} rac{1}{2} imes 1.5 imes 60^2 imes rac{1}{4} &= 100 imes 0.42 imes imes T \ & \Delta T &= rac{1.5 imes 60^2}{8 imes 100 imes 0.42} &= 16.07 \ ^\circ \mathrm{C} \end{aligned}$$

Hence, the correct answer is option C.

Solution 15

Let initially the charge is q so

$$egin{aligned} rac{1}{2}rac{q^2}{C} &= U_i \ {
m And} \ rac{1}{2}rac{{(q+2)}^2}{C} &= U_f \ {
m Given} \ rac{U_f - U_i}{U_i} imes 100 &= 44 \ rac{{(q+2)}^2 - q^2}{q} &= .44 \ &\Rightarrow q = 10 {
m C} \end{aligned}$$

Hence, the correct answer is option A.

Solution 16

$$egin{aligned} rac{mv^2}{r} &= rac{2k
ho imes\pi R^2 q}{r} \ \Rightarrow rac{1}{2}mv^2 &= rac{
ho R^2 q}{4arepsilon_0} \end{aligned}$$

Hence, the correct answer is option A.

Solution 17

$$200 imesrac{1}{4\pi imes16} imesrac{3.5}{100}=rac{B_0^2}{2\mu_0}C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ Tm/A}$$

$$C = 3 \times 10^8$$
 m/sec

 $\Rightarrow B_0 = 1.71 \times 10^{-8} \,\mathrm{T}$

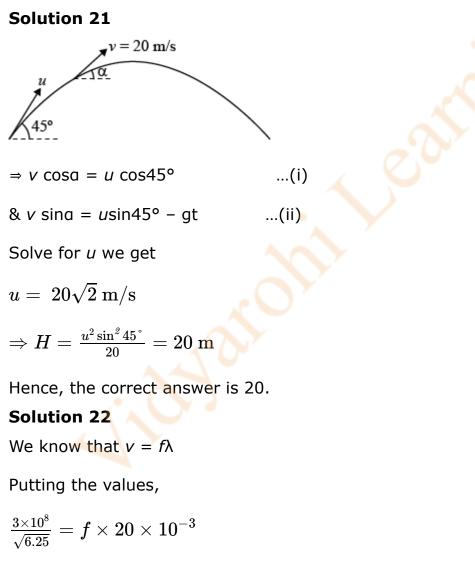
Hence, the correct answer is option B.

Solution 18

$$egin{aligned} 3.\,8 &= 0.\,6 + rac{1}{2}mv_1^2 \ 1.\,4 &= 0.\,6 + rac{1}{2}mv_2^2 \ &\Rightarrow rac{v_1^2}{v_2^2} = rac{3.2}{0.8} = rac{4}{1} \ &\Rightarrow rac{v_1}{v_2} = rac{2}{1} \end{aligned}$$

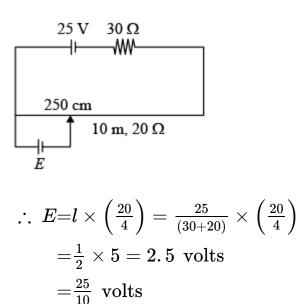
Hence, the correct answer is option B.

Solution 19


$$egin{aligned} rac{I_{ ext{max}}}{I_{ ext{min}}} &= \left(rac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}}
ight)^2 = \left(rac{5}{1}
ight)^2 \ &= rac{25}{1} \end{aligned}$$

Hence, the correct answer is option D.

$$egin{aligned} T.\,E. &= rac{-Z^2me^4}{8(nharepsilon_0)^2} \ P.\,E. &= rac{-Z^2me^4}{4(nharepsilon_0)^2} \ K.\,E. &= rac{Z^2me^4}{8(nharepsilon_0)^2} \end{aligned}$$


As electron makes transition to higher level, total energy and potential energy increases (due to negative sign) while the kinetic energy reduces.

Hence, the correct answer is option B.

 $\Rightarrow f = 6 \times 10^9 \text{ Hz}$

Hence, the correct answer is 6.

Hence, the correct answer is 25.

Solution 24

$$A = |10 \cos (\pi x)|$$

At $x = \frac{4}{3}$
 $A = |10 \cos (\pi \times \frac{4}{3})|$
 $= |-5 \text{ cm}|$

$$\therefore Amp = 5 cm$$

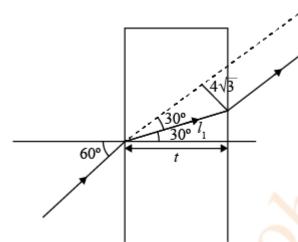
Hence, the correct answer is 5.

Solution 25

 $V_L = 5 \text{ V} \text{ as } V_Z = 5 \text{ V}$

$$\therefore I_L = rac{V_L}{R_L} = rac{5}{10^3} = 5 \,\,\mathrm{mA}$$

Hence, the correct answer is 5.


$$N_1 = rac{\left(rac{10^{-2}}{1}
ight)}{2^4}
onumber \ N_2 = rac{\left(rac{10^{-2}}{2}
ight)}{2^2}
onumber \ \Rightarrow rac{N_1}{N_2} = rac{1}{2}$$

 \therefore Mass ratio of A and B,

$$egin{array}{ll} rac{m_1}{m_2} =& rac{N_1}{N_2} imes \left(rac{M_1}{M_2}
ight. \ =& rac{1}{2} imes \left(rac{1}{2}
ight) \ =& rac{1}{4} \ =& rac{25}{100} \ dots \ x =& 25 \end{array}$$

Hence, the correct answer is 25.

Solution 27

- \therefore Thickness, $t = I_1 \cos 30^\circ$

$$=8\sqrt{3} imesrac{\sqrt{3}}{2}\ =4 imes 3\ =12\,\,\mathrm{cm}$$

Hence, the correct answer is 12.

Solution 28

 $V_{max} = NAB\omega$

- $= 1000 \times 1 \times 0.07 \times (2 \pi \times 1)$
- ≅ 440 volts

Hence, the correct answer is 440.

Solution 29

By 1st law,

$$egin{aligned} \Delta U &= \Delta Q - rac{\Delta Q}{4} = rac{3}{4} \; \Delta \; Q \ \Rightarrow n C_v \; \Delta \; T &= rac{3}{4} n C \; \Delta \; T \ \Rightarrow C &= rac{4 C_v}{3} = 2 R \end{aligned}$$

Hence, the correct answer is 2.

Solution 30

Temperature of surrounding = 20°C

- For $0 \rightarrow 6$ minutes, average temp. = 70°C
 - \rightarrow Rate of cooling \propto 70°C 20°C = 50°C
- For $6 \rightarrow t_2$ minutes, average temp. = 50°C
 - \rightarrow Rate of cooling $\propto 30^{\circ}$ C

$$\Rightarrow$$
 $t_2 - 6 = \frac{5}{3} = (6 \text{ minutes})$

 $\Rightarrow t_2 = 16 \text{ minutes}$

Hence, the correct answer is 16.

Solution 31

Mass of organic compound = 120 g

Mass of $CO_2 = 330$ g

Moles of CO_2 = $\frac{330}{44}=7.5$

Mass of carbon = $7.5 \times 12 = 90$ gm

Percentage of C = $\frac{90 \times 100}{120} = 75\%$

Mass of $H_2O = 270 \text{ g}$

Moles of H₂O = $\frac{270}{18} = 15$

Mass of hydrogen = $15 \times 2 = 30$ gm

Percentage of H = $\frac{30 \times 100}{120} = 25\%$

Hence, the correct answer is option D.

Solution 32

Wavelength of radiation = 300 nm

Photon energy=
$$\frac{hc}{\lambda}$$

= $\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9}}$
=6.63 × 10⁻¹⁹ J

Energy of 1 mole of photons

=
$$6.63 \times 10^{-19} \times 6.02 \times 10^{23} \times 10^{-3}$$

= 399 kJ

Hence, the correct answer is option C.

Solution 33

$$\begin{split} \mathbf{C}_{2}^{2-} : \ \sigma_{1s}^{2} \ \sigma_{1s}^{*2} \ \sigma_{2s}^{2} \ \sigma_{2s}^{*2} \ \pi_{2p_{x}}^{2} = \pi_{2p_{y}}^{2} \sigma_{2p_{z}}^{2} \\ \mathbf{N}_{2}^{2-} : \ \sigma_{1s}^{2} \ \sigma_{1s}^{*2} \ \sigma_{2s}^{2} \ \sigma_{2s}^{*2} \ \sigma_{2p_{z}}^{2} \ \pi_{2p_{x}}^{2} = \pi_{2p_{y}}^{2} \pi_{2p_{x}}^{*1} = \pi_{2p_{y}}^{*1} \\ \mathbf{O}_{2}^{2-} : \ \sigma_{1s}^{2} \ \sigma_{1s}^{*2} \ \sigma_{2s}^{2} \ \sigma_{2s}^{*2} \ \sigma_{2p_{z}}^{2} \ \pi_{2p_{x}}^{2} = \pi_{2p_{y}}^{2} \pi_{2p_{x}}^{*2} = \pi_{2p_{y}}^{2} \\ \end{split}$$

B.O.
$$(C_2^{2-}) = 3$$
; B.O. $(N_2^{2-}) = 2$; B.O. $(O_2^{2-}) = 1$

Hence, the correct answer is option B.

2C (graphite) +
$$3H_2(g) \rightarrow C_2H_6(g)$$

 $\Delta H_r = +1560 + 2(-394) + 3(-286)$
= -86.0 kJ mol⁻¹
Enthalpy of formation of C₂H₆(g) = -86.0 kJ mol⁻¹

Hence, the correct answer is option C.

Solution 35

 $A \rightarrow Products$

For a first order reaction,

 $t_{rac{1}{2}}=rac{\ln 2}{k}=rac{0.693}{k}$

Time for 90% conversion,

 $egin{aligned} t_{90\%} &= rac{1}{k} {
m ln} \, rac{100}{10} = rac{\ln 10}{k} = rac{2.303}{k} \ t_{90\%} &= rac{2.303}{0.693} t_{rac{1}{2}} = 3.\, 32 t_{rac{1}{2}} \end{aligned}$

Hence, the correct answer is option C.

Solution 36

Melting points of the given metals

Hg: -38.83° C

Ag: 961.8° C

Ga: 29.76° C

Cs: 28.44° C

 \therefore Metal having highest melting point is Ag.

Hence, the correct answer is option B.

Solution 37

Hall-Herault process is used for the extraction of aluminium by electrolysis molten Al2O₃ 2Al2O₃ + 3C \rightarrow 4Al + 3CO₂

Hence, the correct answer is option B.

Solution 38

Molecular hydrogen is produced as a byproduct in the industrial production of NaOH by electrolysis of aq NaCl solution

 $NaCI \rightarrow Na^{+} + CI^{-}$

 $\mathrm{H}_{2}\mathrm{O}\,\rightleftharpoons\,\mathrm{H}^{+}+\mathrm{OH}^{-}$

Cathode : $2H_2O + 2e \rightarrow H_2 + 2OH^{-1}$

Anode : $2CI^- \rightarrow CI_2 + 2e$

NaOH is crystallised from the remaining part of electrolyte.

Hence, the correct answer is option A.

Solution 39

Baking soda (NaHCO₃) is used in certain type of fire extinguishers because it decomposes at high temperature to produce CO_2 which extinguishes fire

$$2\,\mathrm{NaHCO}_3\!\left(\mathrm{s}
ight) \stackrel{\Delta}{\longrightarrow} \,\,\mathrm{Na}_2\,\mathrm{CO}_3\left(\mathrm{s}
ight) + \mathrm{H}_2\mathrm{O}\left[\uparrow + \mathrm{CO}_2\,\uparrow
ight]$$

Hence, the correct answer is option A.

Solution 40

 PCI_5 is well known but NCI_5 is not because nitrogen does not have vacant d-orbitals in its valence shell.

So, nitrogen cannot expand its octet. On the other hand phosphorus has vacant d-orbitals in its valence shell which enables it to expand its octet.

Hence, the correct answer is option B.

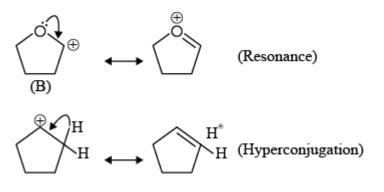
Solution 41

Crystal field splitting (Δ_0) for octahedral complexes depends on oxidation state of the metal as well as to which transition series the metal belongs. For the same oxidation state, the crystal field splitting (Δ_0) increases as we move from $3d \rightarrow 4d \rightarrow 5d$. Cr³⁺ and Fe³⁺ belong to 3d series, Mo³⁺ belongs to 4d series and Os³⁺ belongs to 5d series. Therefore crystal field splitting (Δ_0) is highest for [Os(H₂O)₆]³⁺.

Hence, the correct answer is option D.

Solution 42

Among the given gases, the green house gases which are responsible for heating the atmosphere are CH_4 , water vapour and ozone. Nitrogen is not a green house gas.


Hence, the correct answer is option D.

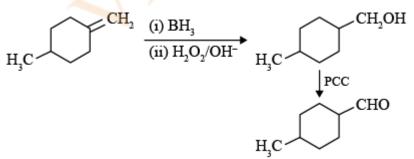
Solution 43

The given carbocations are

Carbocation (A) is stabilised by hyperconjugation due to 4 a hydrogen atoms. Carbocation (C) is also stabilised by hyperconjugation due to 4 a hydrogen atoms but destabilised by –I effect of O-atom. Carbocation (B) is most stable as it is stabilised by resonance.

 \therefore Correct decreasing order of stability is

B > A > C


Disclaimer: None of the given options is correct.

Solution 44

The n-bond present is alkenes is weaker than σ -bond present in alkanes. That makes alkenes less stable than alkanes. Therefore, statement-I is correct. Carbon-carbon double bond is stronger than Carbon-carbon single bond because more energy is required to break 1 sigma and 1 pi bond than to break 1 sigma bond only. Therefore, statement-II is also correct.

Hence, the correct answer is option A.

Solution 45

The first step involves addition of H_2O to alkene according to antimarkownikoff's rule while the second step involves oxidation of 1° alcohol to aldehyde. Hence, the correct answer is option C.

Solution 46

 $CH_{3} - CH - CH_{2} - CH = CH - CH_{3} \xrightarrow{PCC}$ $CH_{3} - CH - CH_{2} - CH = CH - CH_{3}$ $CH_{3} - CH_{2} - CH_{2} - CH = CH - CH_{3}$ $MaOl \rightarrow O - CH_{2} - CH_{2} - CH = CH - CH_{3} \xrightarrow{Soda}$ $CH_{3} - CH = CH - CH_{3}$ $CH_{3} - CH = CH - CH_{3}$ $CH_{3} - CH = CH - CH_{3}$

Hence, the correct answer is option C.

Solution 47

 $\begin{array}{l} \mathrm{CH}_{3}-\underset{\mathrm{Propan-1-ol}}{\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}} \xrightarrow{\mathrm{SOCl}_{2}} \\ \mathrm{CH}_{3}-\underset{\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}}{\overset{\mathrm{KCN}}{\longrightarrow}} \\ \mathrm{CH}_{3}-\underset{\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CN}} \xrightarrow{\underset{\mathrm{Na}(\mathrm{Hg})/\mathrm{C}_{2}\mathrm{H}_{5}}{\overset{\mathrm{H}_{2}/\mathrm{Ni}}{\longrightarrow}}} \\ \mathrm{CH}_{3}-\underset{n-\mathrm{butylamine}}{\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}} \end{array}$

Hence, the correct answer is option A.

Solution 48

Nylon 6, 6 is a condensation polymer of hexamethylene diamine and adipic acid Dacron is a condensation polymer of terephthalic acid and ethylene glycol. Buna-N is an addition polymer of 1, 3-butadiene and acrylonitrile Silicone is a condensation polymer of dialkyl silanediol.

Hence, the correct answer is option C.

Solution 49

The given structure is that of cimetidine which is well known antacid.

Hence, the correct answer is option C.

Solution 50

Cupric salts give green flame with blue centre. The colour of other salts are

Sr ²⁺	Crimson
	red
Ca ²⁺	Brick red
Ba ²⁺	Green

Hence, the correct answer is option A.

Solution 51

V₁, Volume of 0.2 g H₂ at 200 K = $\frac{0.2 \times R \times 200}{2 \times P}$

V₂, Volume of 3.0 g of gas A at 300 K = $\frac{3.0 \times R \times 300}{M \times P}$

 $V_1 = V_2$ (Given)

$$rac{0.2 imes R imes 200}{2 imes P} = rac{3.0 imes R imes 300}{M imes P}$$

 $\therefore M = 45 \text{ g mol}^{-1}$

Hence, the correct answer is 45.

Solution 52

According to Henry's law, partial pressure of a gas is given by

$$P_q = (K_H) X_q$$

where X_g is mole fraction of gas in solution

$$egin{aligned} 0.\,835 &= 1.\,67 imes 10^3 \,\, (\mathrm{X_{CO_2}}) \ \mathrm{X_{CO_2}} &= 5 imes 10^{-4} \end{aligned}$$

Mass of CO₂ in 1 L water = 1221×10^{-3} g

Hence, the correct answer is 1221.

Solution 53

 $\mathrm{PCl}_{5}\left(\mathrm{g}
ight) \ \rightleftharpoons \ \mathrm{PCl}_{3}\left(\mathrm{g}
ight) + \mathrm{Cl}_{2}\left(\mathrm{g}
ight)$

Initial moles	5		
Equilibrium moles	5 – <i>x</i>	x	x

Number of moles of $N_2 = 2$

Equilibrium pressure = 2.46 atm

$$P_{eq} = rac{(7+x) imes 0.082 imes 600}{200} = 2.46$$

On solving,
$$x = 3$$

$$\therefore \text{ KP} = \frac{\left(\frac{3P}{10}\right)\left(\frac{3P}{10}\right)}{\left(\frac{2P}{10}\right)} = \frac{9 \times 2.46}{20}$$
$$= 1107 \times 10^{-3} \text{ atm}$$

Hence, the correct answer is 1107.

Solution 54

Resistance

Conductivity

Conductivity

: Cell constant

= 0.1 M = 1750 ohm = 0.152 × 10⁻³ S cm⁻¹ = $\frac{Cell \text{ constant}}{Resistance}$

= $0.152 \times 10^{-3} \times 1750$

$$= 266 \times 10^{-3} \text{ cm}^{-1}$$

Hence, the correct answer is 266.

Solution 55

Mass of wood charcoal = 0.6 g

Initial moles of acetic acid = $0.2 \times 0.2 = 0.04$

Final moles of acetic acid = $0.1 \times 0.2 = 0.02$

Moles of acetic acid adsorbed = 0.04 - 0.02

= 0.02

Mass of acetic acid adsorbed per gm of charcoal= $rac{0.02 imes 60}{0.6} = 2.0~{
m g}$

Hence, the correct answer is 2.

Solution 56

Baryte	BaSO ₄
Galena	PbS
Zinc blende	ZnS
Copper pyrites	$CuFeS_2$

Of the given minerals, only 3 are sulphide based.

Hence, the correct answer is 3.

Solution 57

Manganese (VI) disproportionates in acidic medium as

 $3\,\mathrm{MnO}_4^{2-} + 4\mathrm{H}^+ \longrightarrow 2\,\mathrm{MnO}_4^- + \mathrm{MnO}_2^+ 2\mathrm{H}_2\mathrm{O}$

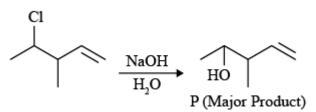
Difference in oxidation states of Mn in the products formed = 7 - 4 = 3

Hence, the correct answer is 3.

Solution 58

Mass of organic compound = 0.2 g

Volume of N_2 gas evolved at STP = 22.4 mL


Mass of N₂ gas evolved = $\frac{22.4 \times 10^{-3} \times 28}{22.4}$

=0.028 g

Percentage of nitrogen in the compound $= rac{0.028 imes 100}{0.2} = 14\%$

Hence, the correct answer is 14.

Solution 59

The given reaction undergoes nucleophilic substitution by $\ensuremath{\text{SN}}_2$ mechanism at room temperature

 \therefore No. of π electrons present in P = 2

Hence, the correct answer is 2.

Solution 60

The given pentapeptide is

ALA – GLY – LEU – ALA – VAL

It has 4 peptide linkages.

Hence, the correct answer is 4.

Solution 61

Given $x * y = x^2 + y^3$ and (x * 1) * 1 = x * (1 * 1)

So,
$$(x^{2} + 1) * 1 = x * 2$$

$$\Rightarrow (x^{2} + 1)^{2} + 1 = x^{2} + 8$$

$$\Rightarrow x^{4} + 2x^{2} + 2 = x^{2} + 8$$

$$\Rightarrow (x^{2})^{2} + x^{2} - 6 = 0$$

$$\therefore (x^{2} + 3) (x^{2} - 2) = 0$$

$$\therefore x^{2} = 2$$
Now, $2 \sin^{-1} \left(\frac{x^{4} + x^{2} - 2}{x^{4} + x^{2} + 2}\right) = 2 \sin^{-1} \left(\frac{4}{8}\right)$

$$= 2 \cdot \frac{\pi}{6}$$

$$= \frac{\pi}{3}$$

Hence, the correct answer is option B.

Solution 62

Given equation : $(e^{2x} - 4)(6e^{2x} - 5e^{x} + 1) = 0$ $\Rightarrow e^{2x} - 4 = 0$ or $6e^{2x} - 5e^{x} + 1 = 0$ $\Rightarrow e^{2x} = 4$ or $6(e^{x})^{2} - 3e^{x} - 2e^{x} + 1 = 0$ $\Rightarrow 2x = \ln 4$ or $(3e^{x} - 1)(2e^{x} - 1) = 0$ $\Rightarrow x = \ln 2$ or $e^{x} = \frac{1}{3}$ or $e^{x} = \frac{1}{2}$ or $x = \ln \left(\frac{1}{3}\right), -\ln 2$

Sum of all real roots = ln2 - ln3 - ln2

= -ln3

Hence, the correct answer is option B.

Solution 63

Given system of equations

x + y + az = 2(i) 3x + y + z = 4(ii) x + 2z = 1(iii)

Solving (i), (ii) and (iii), we get

x = 1, y = 1, z = 0 (and for unique solution $a \neq -3$)

Now, (a, 1), (1, a) and (1, -1) are collinear

$$\begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & -1 & 1 \end{vmatrix} = 0$$

$$\Rightarrow a(a + 1) - 1(0) + 1(-1 - a) = 0$$

$$\Rightarrow a^{2} - 1 = 0$$

$$\therefore a = \pm 1$$

 \therefore Sum of absolute values of a = 1 + 1 = 2

Hence, the correct answer is option C.

Solution 64

x, y > 0 and $x^3y^2 = 2^{15}$

Now, 3x + 2y = (x + x + x) + (y + y)

So, by A.M. \geq G.M. inequality

$$egin{array}{l} rac{3x+2y}{5} \geq \sqrt[5]{x^3 \cdot y^2} \ dots \ 3x+2y{\geq}5\sqrt[5]{2^{15}} \ \geq 40 \end{array}$$

 \therefore Least value of 3x + 4y = 40

Hence, the correct answer is option D.

Solution 65

$$f\left(x
ight) = \left\{egin{array}{c} rac{\sin(x-[x])}{x-[x]}, & x\in(-2,-1)\ \max\left\{2x,\ 3\left[|x|
ight]
ight\}, & |x|<1\ 1, & ext{otherwise} \end{array}
ight.$$

$$f\left(x
ight)=\left\{egin{array}{c} rac{\sin(x+2)}{x+2}, & xarepsilon\left(-2,-1
ight)\ 0, & xarepsilon\left(-1,\ 0
ight]\ 2x, & xarepsilon\left(0,\ 1
ight)\ 1, & ext{otherwise} \end{array}
ight.$$

It clearly shows that f(x) is discontinuous

At x = -1, 1 also non differentiable

and at
$$x = 0$$
, L.H.D = $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = 0$

$$\mathsf{R.H.D} = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 2$$

- \therefore f(x) is not differentiable at x = 0
- \therefore m = 2, n = 3

Hence, the correct answer is option C.

Solution 66

$$egin{aligned} I &= \int \limits_{rac{-\pi}{2}}^{rac{\pi}{2}} rac{dx}{(1+e^x)(\sin^6 x + \cos^6 x)} & \dots \dots (\mathrm{i}) \ I &= \int \limits_{rac{-\pi}{2}}^{rac{\pi}{2}} rac{dx}{(1+e^{-x})(\sin^6 x + \cos^6 x)} & \dots \dots (\mathrm{ii}) \end{aligned}$$

(i) and (ii)

From equation (i) & (ii)

$$2I = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{\sin^6 x + \cos^6 x}$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sin^6 x + \cos^6 x} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 - \frac{3}{4}\sin^2 2x}$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{4\sec^2 2xdx}{4 + \tan^2 2x} = 2\int_{0}^{\frac{\pi}{4}} \frac{4\sec^2 2x}{4 + \tan^2 2x} dx$$

when x = 0, t = 0

Now, an2x = twhen, $x = rac{\pi}{4}, \ t o \infty$

$$2\sec^2 2x \, dx = dt$$

$$egin{array}{lll} & \therefore \ I{=}2\int\limits_{0}^{\infty}rac{2dt}{4{+}t^2} \ {=}2ig(an^{-1}\ rac{t}{2}ig)_{0}^{\infty} \ {=}2{\cdot}rac{\pi}{2} \ {=}\pi \end{array}$$

Hence, the correct answer is option C.

$$\begin{split} \lim_{n \to \infty} \left(\frac{n^2}{(n^2 + 1)(n + 1)} + \frac{n^2}{(n^2 + 4)(n + 2)} + \dots + \frac{n^2}{(n^2 + n^2)(n + n)} \right) \\ &= \lim_{n \to \infty} \sum_{r=1}^n \frac{n^2}{(n^2 + r^2)(n + r)} \\ &= \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{n} \frac{1}{\left[1 + \left(\frac{r}{n}\right)^2\right] \left[1 + \left(\frac{r}{n}\right)\right]} \\ &= \int_0^1 \frac{1}{(1 + x^2)(1 + x)} dx \\ &= \frac{1}{2} \int_0^1 \left[\frac{1}{1 + x} - \frac{(x - 1)}{(1 + x^2)}\right] dx \\ &= \frac{1}{2} \left[\ln\left(1 + x\right) - \frac{1}{2}\ln\left(1 + x^2\right) + \tan^{-1}x\right]_0^1 \\ &= \frac{1}{2} \left[\frac{\pi}{4} + \frac{1}{2}\ln 2\right] \\ &= \frac{\pi}{8} + \frac{1}{4}\ln 2 \end{split}$$

Hence, the correct answer is option A.

Solution 68

According to the question (Let P(x, y))

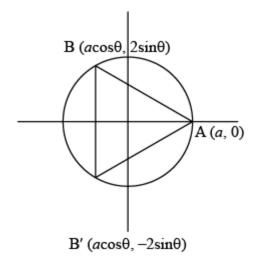
$$2x - y \frac{dx}{dy} = 0$$

 $\therefore 2 \frac{dy}{y} = \frac{dx}{x}$

 \Rightarrow 2ln y = ln x + ln c

 $\Rightarrow y^2 = cx$

 \therefore this curve passes through (3, 3)


$$\therefore c = 3$$

 \therefore required parabola is $y^2 = 3x$ and L.R = 3

Hence, the correct answer is option A.

Solution 69

Given ellipse $rac{x^2}{a^2}+rac{y^2}{4}=1,\ a>2$

... Let $A(\theta)$ be the area of ΔABB'

Then $A\left(heta
ight) = rac{1}{2}4{
m sin} heta\left(a+a{
m cos} heta
ight)$ $A'\left(heta
ight) = a\left(2{
m cos} heta+2{
m cos}^2 heta
ight)$

For maxima $A'(\theta) = 0$

 $\Rightarrow \cos\theta = -1, \ \cos\theta = rac{1}{2}$

But for maximum area $\cos\theta = \frac{1}{2}$

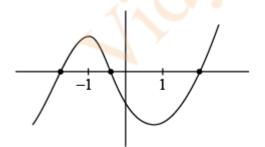
$$egin{aligned} &\therefore \; A\left(heta
ight)=6\sqrt{3} \ &\Rightarrow 2rac{\sqrt{3}}{2}\left(a+rac{a}{2}
ight)=6\sqrt{3} \ &\Rightarrow a=4 \ &\therefore \; e=\sqrt{1-rac{b^2}{a^2}}=\sqrt{1-rac{4}{16}}=rac{\sqrt{3}}{2} \end{aligned}$$

Hence, the correct answer is option A.

Solution 70

 \therefore A(1, a), B(a, 0) and C(0, a) are the vertices of $\triangle ABC$ and area of $\triangle ABC = 4$

$$\therefore \begin{vmatrix} 1 & \alpha & 1 \\ \alpha & 0 & 1 \\ 0 & \alpha & 1 \end{vmatrix} = 4 \Rightarrow \begin{vmatrix} 1(1-\alpha) - \alpha(\alpha) + \alpha^2 \end{vmatrix} = 8 \Rightarrow \alpha = \pm 8$$


Now, (a, -a), (-a, a) and (a^2, β) are collinear

$$\begin{vmatrix} 8 & -8 & 1 \\ -8 & 8 & 1 \\ 64 & \beta & 1 \end{vmatrix} = 0 = \begin{vmatrix} -8 & 8 & 1 \\ 8 & -8 & 1 \\ 64 & \beta & 1 \end{vmatrix}$$
$$\Rightarrow 8(8 - \beta) + 8(-8 - 64) + 1(-8\beta - 8 \times 64) = 0$$
$$\Rightarrow 8 - \beta - 72 - \beta - 64 = 0$$
$$\Rightarrow \beta = -64$$

Hence, the correct answer is option C.

Solution 71

Given equation $x^7 - 7x - 2 = 0$ Let $f(x) = x^7 - 7x - 2$ $f'(x) = 7x^6 - 7 = 7(x^6 - 1)$ and $f'(x) = 0 \Rightarrow x = +1$ and f(-1) = -1 + 7 - 2 = 5 > 0 f(1) = 1 - 7 - 2 = -8 < 0So, roughly sketch of f(x) will be

So, number of real roots of f(x) = 0 and 3

Hence, the correct answer is option D.

Solution 72

 $\therefore x$ is a random variable

 $\therefore k + 2k + 4k + 6k + 8k = 1$

$$\therefore k = rac{1}{21}$$

Now $P\left(1 < X < 4 | x \leq 2
ight) = rac{4k}{7k} = rac{4}{7}$

Hence, the correct answer is option A.

Solution 73

$$egin{aligned} &\cos\left(x+rac{\pi}{3}
ight)\cos\left(rac{\pi}{3}-x
ight)=rac{1}{4}{
m cos}^2\,2x,\ x\in[-3\pi,\ 3\pi]\ &\Rightarrow\cos2x+\cosrac{2\pi}{3}=rac{1}{2}{
m cos}^2\,2x\ &\Rightarrow\cos^22x-2\cos2x-1=0\ &\Rightarrow\cos2x=1 \end{aligned}$$

 \therefore Number of solutions = 7

Hence, the correct answer is option D.

Solution 74

Let
$$\overrightarrow{a}_1 = \hat{i} + 2\hat{j} + 3\hat{k}$$

 $\overrightarrow{a}_2 = 2\hat{i} + 4\hat{j} + 5\hat{k}$
 $\overrightarrow{p} = 2\hat{i} + 3\hat{j} + \lambda\hat{k}, \quad \overrightarrow{q} = \hat{i} + 4\hat{j} + 5\hat{k}$
 $\therefore \overrightarrow{p} \times \overrightarrow{q} = (15 - 4\lambda)\hat{i} - (10 - \lambda)\hat{j} + 5\hat{k}$
 $\overrightarrow{a}_2 - \overrightarrow{a}_1 = \hat{i} + 2\hat{j} + 2\hat{k}$

: Shortest distance

$$= \left|rac{(15-4\lambda)-2(10-\lambda)+10}{\sqrt{(15-4\lambda)^2+(10-\lambda)^2+25}}
ight| = rac{1}{\sqrt{3}}$$

$$\Rightarrow 3(5-2\lambda)^2 = (15-4\lambda)^2 + (10-\lambda)^2 + 25$$

ī

$$\Rightarrow 5\lambda^2 - 80\lambda + 275 = 0$$

$$\therefore$$
 Sum of values of $\lambda=rac{80}{5}=16$

Hence, the correct answer is option A.

Solution 75

Let P(x, y, z) be any point on plane P_1

Then $(x + 4)^2 + (y - 2)^2 + (z - 1)^2 = (x - 2)^2 + (y + 2)^2 + (z - 3)^2$

 $\Rightarrow 12x - 8y + 4z + 4 = 0$

 $\Rightarrow 3x - 2y + z + 1 = 0$

And P_2 : 2x + y + 3z = 1

 \therefore angle between P_1 and P_2

 $\cos heta \left| rac{6-2+3}{14}
ight| \Rightarrow heta = rac{\pi}{3}$

Hence, the correct answer is option C.

Solution 76

$$egin{array}{lll} ec & \left| \widehat{a} + \widehat{b} + 2\left(\widehat{a} imes \widehat{b}
ight)
ight| = 2, \; heta \in (0, \; \pi) \ \Rightarrow \left| \widehat{a} + \widehat{b} + 2\left(\widehat{a} imes \widehat{b}
ight)
ight|^2 = 4. \ \Rightarrow \left| \widehat{a}
ight|^2 + \left| \widehat{b}
ight|^2 + 4 \left| \widehat{a} imes \widehat{b}
ight|^2 + 2 \widehat{a} \cdot \widehat{b} = 4. \ ec & ec &$$

where θ is angle between \hat{a} and \hat{b} .

$$\therefore \left. 2 \left| \widehat{a} imes \widehat{b} \right| = \sqrt{3} = \left| \widehat{a} - \widehat{b} \right|$$

(S1) is correct

And projection of
$$\widehat{a}$$
 on $\left(\widehat{a}+\widehat{b}
ight)=\left|rac{\widehat{a}\cdot\left(\widehat{a}+\widehat{b}
ight)}{\left|\widehat{a}+\widehat{b}
ight|}
ight|=rac{1}{2}.$

(S2) is correct.

Hence, the correct answer is option C.

$$egin{aligned} ext{Let} \ x^3 &= heta \Rightarrow rac{ heta}{2} \in \left(rac{\pi}{4}, \ rac{3\pi}{4}
ight) \ dots \ y &= ext{tan}^{-1} \ (ext{sec} heta - ext{tan} heta) \ &= ext{tan}^{-1} \ \left(rac{1- ext{sin} heta}{ ext{cos} heta}
ight) \ dots \ y &= rac{\pi}{4} - rac{ heta}{2} \ &y &= rac{\pi}{4} - rac{x^3}{2} \ &dots \ y' &= -3x \ &dots \ x^2y'' - 6y + rac{3\pi}{2} = 0. \end{aligned}$$

Hence, the correct answer is option B.

Solution 78

: given statement is

$$(A \land C) \rightarrow B$$

Then its negation is

$$\sim \{(A \land C) \rightarrow B\}$$

or ~ {~ ($A \land C$) $\lor B$ }

 $\therefore (A \land C) \land (\sim B)$

or (~ B) \land (A \land C)

Hence, the correct answer is option B.

$$egin{aligned} &\because -rac{dx}{dy} = rac{x^2}{xy - x^2y^2 - 1} \ &\therefore rac{dy}{dx} = rac{x^2y^2 - xy + 1}{x^2} \ & ext{Let} \ xy = v \Rightarrow y + xrac{dy}{dx} = rac{dv}{dx} \ &\therefore rac{dv}{dx} - y = rac{(v^2 - v + 1)y}{v} \ &\therefore rac{dv}{dx} = rac{v^2 + 1}{x} \end{aligned}$$

∴
$$y(1) = 1 \Rightarrow \tan^{-1} (xy) = \ln x + \tan^{-1}(1)$$

Put $x = e$ and $y = y(e)$ we get
 $\tan^{-1} (e \cdot y(e)) = 1 + \tan^{-1} 1.$
 $\tan^{-1} (e \cdot y(e)) - \tan^{-1} 1 = 1$
∴ $e(y(e)) = \frac{1 + \tan(1)}{1 - \tan(1)}$

Hence, the correct answer is option D.

Solution 80

 $\because f_{\lambda}(x) = 4\lambda x^3 - 36\lambda x^2 + 36x + 48$

$$\therefore f'_{\lambda}(x) = 12(\lambda x^2 - 6\lambda x + 3)$$

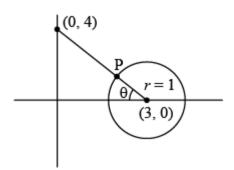
For $f_{\lambda}(x)$ increasing : $(6\lambda)^2 - 12\lambda \le 0$

$$egin{array}{lll} \therefore \ \lambda \in \left[0, rac{1}{3}
ight] \ \therefore \ \lambda^* = rac{1}{3} \end{array}$$

Now, $f_{\lambda}^{*}(x) = \frac{4}{3}x^{3} - 12x^{2} + 36x + 48$

$$\therefore f_{\lambda}^{*}(1) + f_{\lambda}^{*}(-1) = 73\frac{1}{2} - 1\frac{1}{2}$$

=72.


Hence, the correct answer is option D.

Here
$$|z - 3| \le 1$$

$$\Rightarrow (x - 3)^2 + y^2 < 1$$
and $z (4 + 3i) + \overline{z} (4 - 3i) \le 24$

$$\Rightarrow 4x - 3y \le 12$$

$$\tan \theta = \frac{4}{3}$$

- $\therefore \text{ Coordinate of } P = (3 \cos\theta, \sin\theta) \\ = \left(3 \frac{3}{5}, \frac{4}{5}\right)$
- $\therefore \ lpha+ieta=rac{12}{5}+rac{4}{5}i$ $\therefore \ 25\left(lpha+eta
 ight)=80$

Hence, the correct answer is 80.

Solution 82

$$S = \left\{ egin{pmatrix} -1 & a \ 0 & b \end{pmatrix}; a, b \in \{1, 2, 3, \dots, 100\}
ight\}$$

 $\because A = egin{pmatrix} -1 & a \ 0 & b \end{pmatrix}$ then even powers of
 A as $egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$, if $b = 1$ and $a \in \{1, \dots, 100\}$

Here, n(n + 1) is always even.

 \therefore T_1 , T_2 , T_3 , ..., T_n are all I for b = 1 and each value of a.

100

$$egin{array}{ccc} & \cap & T_n = 100 \ & n = 1 \end{array}$$

Hence, the correct answer is 100.

Solution 83

Sum of all given numbers = 31

Difference between odd and even positions must be 0, 11 or 22, but 0 and 22 are not possible.

 \therefore Only difference 11 is possible

This is possible only when either 1, 2, 3, 4 is filled in odd position in some order and remaining in other order. Similar arrangements of 2, 3, 5 or 7, 2, 1 or 4, 5, 1 at even positions.

 \therefore Total possible arrangements = $(4! \times 3!) \times 4$

= 576

Hence, the correct answer is 576.

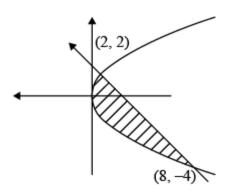
Solution 84

The numbers upto 24 which gives g.c.d. with 24 equals to 1 are 1, 5, 7, 11, 13, 17, 19 and 23.

Sum of these numbers = 96

There are four such blocks and a number 97 is there upto 100.

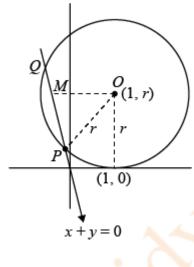
- : Complete sum
- $= 96 + (24 \times 8 + 96) + (48 \times 8 + 96) + (72 \times 8 + 96) + 97$
- = 1633


Hence, the correct answer is 1633.

Solution 85

$$\begin{split} 1 + 3 + 3^2 + \ldots + 3^{2021} &= \frac{3^{2022} - 1}{2} \\ &= \frac{1}{2} \left\{ (10 - 1)^{1011} - 1 \right\} \\ &= \frac{1}{2} \left\{ 100k + 10110 - 1 - 1 \right\} \\ &= 50 \ k_1 + 4 \end{split}$$

 \therefore Remainder = 4


Hence, the correct answer is 4.

The required area= $\int_{-4}^{2} \left(4 - y - \frac{y^2}{2}\right) dy$ = $\left[4y - \frac{y^2}{2} - \frac{y^3}{6}\right]_{-4}^{2}$ = 18 square units

Hence, the correct answer is 18.

Solution 87

Here,
$$OM^2 = OP^2 - PM^2$$

$$igg(rac{|1+r|}{\sqrt{2}}igg)^2 = r^2 - 1 \ dots \ r^2 - 2r - 3 \ = 0 \ dots \ r = 3$$

: Equation of circle is $(x - 1)^2 + (y - 3)^2 = 3^2$

h = 1, k = 3, r = 3

 $\therefore h + k + r = 7$

Hence, the correct answer is 7.

Solution 88

Student guesses only two wrong. So there are three possibilities

(i) Student guesses both wrong from 1st section

(ii) Student guesses both wrong from 2nd section

(iii) Student guesses two wrong one from each section

$$\begin{array}{l} \text{Required probabilities} = {}^{4}C_{2} \Big(\frac{3}{4}\Big)^{2} \big(\frac{1}{4}\Big)^{2} \big(\frac{1}{4}\Big)^{6} + {}^{6}C_{2} \Big(\frac{3}{4}\Big)^{2} \big(\frac{1}{4}\Big)^{4} \Big(\frac{3}{4}\Big)^{4} + {}^{4}C_{1} \cdot {}^{6}C_{1} \Big(\\ = \frac{1}{4^{10}} \left[6 \times 9 + 15 \times 9^{3} + 24 \times 9^{2}\right] \\ = \frac{27}{4^{10}} \left[2 + 27 \times 15 + 72\right] \\ = \frac{27 \times 479}{4^{10}} \end{array}$$

Hence, the correct answer is 479.

Solution 89

- $\therefore H: rac{x^2}{a^2} rac{y^2}{1} = 1$
- \therefore Length of latus rectum $=\frac{2}{a}$
- $E:rac{x^2}{4}+rac{y^2}{3}=1$ Length of latus rectum $=rac{6}{2}=3$ $\therefore rac{2}{a}=3 \Rightarrow a=rac{2}{3}$
- $\therefore 12\left(e_{H}^{2}+e_{E}^{2}
 ight)=12\left(1+rac{9}{4}
 ight)+\left(1-rac{3}{4}
 ight)=42$

Hence, the correct answer is 42.

Solution 90

Focus = (4, 4) and vertex = (3, 2)

 \therefore Point of intersection of directrix with axis of parabola = A = (2, 0)

Image of A(2, 0) with respect to line

x + 2y = 6 is $B(x_2, y_2)$

$$egin{array}{lll} \therefore \ rac{x_2-2}{1} = rac{y_2-0}{2} = rac{-2(2+0-6)}{5} \ \therefore \ B\left(x_2, \ y_2 \
ight) = \left(rac{18}{5}, \ rac{16}{5}
ight). \end{array}$$

Point B is point of intersection of direction with axes of parabola P_2 .

 $\therefore x + 2y = \lambda \text{ must have point } \left(\frac{18}{5}, \frac{16}{5}\right)$ $\therefore x + 2y = 10$

Hence, the correct answer is 10.