

JEE Main 25 July 2022(First Shift)

Total Time: 180

Total Marks: 300.0

Solution 1

$$[\eta] = [ML^{-1}T^{-1}]$$
Now if $[\eta] = [P]^a [A]^b [^T]^c$

$$\Rightarrow [ML^{-1}T^{-1}] = [MLT^{-1}]^a [L^2]^b [T]^c$$

$$\Rightarrow a = 1, a + 2b = -1, -a + c = -1$$

$$\Rightarrow a = 1, b = -1, c = 0$$

$$\Rightarrow [\eta] = [P] [A]^{-1} [T]^0$$

$$= [PA^{-1}T^0]$$

Hence, the correct answer is option A.

Solution 2

$$\begin{aligned} & [\text{Surface charge density}] = \frac{[Q]}{[A]} \\ & [\sigma] = [ATL^{-2}] \\ & \stackrel{\longrightarrow}{\rightarrow} D \ \ \text{and} \ \ \sigma \end{aligned}$$

have same dimensions

Hence, the correct answer is option A.

Solution 3

Distance travelled = 60 m

$$\Rightarrow$$
 Angle covered = 135°
Displacement = $2R \sin\left(\frac{135^{\circ}}{2}\right)$
= $2\left(\frac{60}{135} \times \frac{180}{\pi}\right) \left[\frac{1-\cos(135^{\circ})}{2}\right]^{\frac{1}{2}}$
= $2\left(\frac{180}{\pi}\right)(0.85)^{\frac{1}{2}}$
 $\approx 47 \text{ m}$

Hence, the correct answer is option B.

Solution 4

$$v = 3x^2 + 4$$

at $x = 0$, $v_1 = 4$ m/s
 $x = 2$, $v_2 = 16$ m/s
 \Rightarrow Work done = Δ kinetic energy
 $= \frac{1}{2} \times m \left(v_2^2 - v_1^2 \right)$
 $= \frac{1}{4} \left(256 - 16 \right)$
 $= 60 \text{ J}$

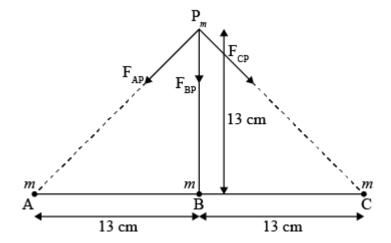
Hence, the correct answer is option B.

Solution 5

$$a=rac{g ext{sin} heta}{1+rac{K^2}{R^2}} \ v=\sqrt{rac{2Sg ext{sin} heta}{1+rac{K^2}{R^2}}} \ \Rightarrow rac{v_c}{v_{ss}}=\sqrt{rac{1+rac{K^2_s}{R^2}}{1+rac{K^2_c}{R^2}}}=\sqrt{rac{1+rac{2}{5}}{1+rac{1}{2}}} \ \Rightarrow \sqrt{rac{rac{7}{5}}{rac{3}{2}}}=\sqrt{rac{14}{15}}$$

Hence, the correct answer is option D.

Solution 6

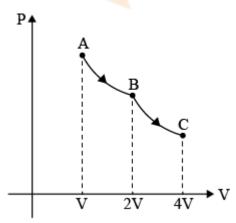


$$m=100 \, \mathrm{kg}$$
 $F_{AP}=rac{Gm^2}{\left(13\sqrt{2}
ight)^2}$ $F_{BP}=rac{Gm^2}{13^2}$ $F_{CP}=rac{Gm^2}{\left(13\sqrt{2}
ight)^2}$ $F_{\mathrm{net}}=F_{BP}+F_{AP}\,\cos 45\,^\circ+F_{CP}\,\cos 45\,^\circ$ $rac{Gm^2}{13^2}\left(1+rac{1}{\sqrt{2}}
ight)$ $=rac{G100^2}{169}\left(1+0.707
ight)$

Hence, the correct answer is option B.

Solution 7

 $\simeq~100~G$



Let AB is isothermal process and BC is adiabatic process then for AB process $P_AV_A=P_BV_B$ $\Rightarrow P_B=10^7~\rm Nm^{-2}$ For process BC $P_BV_B^r=P_CV_C^r$ $P_C=3.536\times 10^6~\rm Pa$

Hence, the correct answer is option B.

Solution 8

Because KE \propto T so A is correct, B is incorrect, statement C can not be said, statement D is contradicting it self, statement E is incorrect (Isothermal process) So No answer correct (Bonus) If the statement of D would have been. "Pressure of gas increases with increase in temperature at constant volume, "then statement D would have been correct, so in that case answer would have been 'A'

Disclaimer: No option is correct.

Solution 9

Both the springs are in parallel combination in both the diagrams so

$$T_1 = 2\pi\sqrt{rac{3m}{2k}}$$
 and $T_2 = 2\pi\sqrt{rac{m}{3k}}$

So,
$$\frac{T_1}{T_2} = \frac{3}{\sqrt{2}}$$

Hence, the correct answer is option A.

Solution 10

$$Q = CV$$

As capacitance is constant $Q \propto V$

and
$$V_f = rac{Q_f}{C} = rac{5}{2 imes 10^{-6}} = 2.5 imes 10^6 {
m \, V}$$

Hence, the correct answer is option A.

Solution 11

We know that

$$R = rac{mv}{Bq} = \sqrt{rac{2mK}{Bq}}$$

$$\Rightarrow$$
 Ratio of radii $= rac{R_1}{R_2} = \sqrt{rac{m_1}{m_2}} rac{q_2}{q_1}$

$$\Rightarrow rac{6}{5} = \sqrt{rac{9}{4}} rac{q_2}{q_1}$$

$$\Rightarrow \frac{q_1}{q_2} = \frac{3}{2} \times \frac{5}{6} = \frac{5}{4}$$

Hence, the correct answer is option B.

Solution 12

Resonant frequency $= rac{1}{\sqrt{LC}} = \omega_0$

- \Rightarrow If we decrease C, ω_0 would increase
- ⇒ Another capacitor should be added in series.

Hence, the correct answer is option C.

Solution 13

We know $\phi = Mi$

Let *i* current be flowing in the larger loop

$$\Rightarrow \! \phi = \left[4 imes rac{\mu_0 i}{4\pi \left(rac{L}{2}
ight)} \left[\sin 45 \degree + \sin 45 \degree
ight]
ight] imes ext{Area}$$

$$=rac{2\sqrt{2}\mu_0 i}{\pi L} imes l^2$$

$$\Rightarrow M = rac{\phi}{i} = rac{2\sqrt{2}\mu_0 l^2}{\pi L}$$

Hence, the correct answer is option C.

Solution 14

$$Z_C = \frac{V}{I}$$

$$\Rightarrow \frac{1}{\omega C} = \frac{230}{6.9} \text{ M}\Omega$$

$$\Rightarrow C = \frac{6.9}{230\omega} \mu F$$

$$=rac{6.9}{230 imes600}~\mu\mathrm{F}$$

$$C$$
=50 pF

Hence, the correct answer is option B.

Solution 15

In primary rainbow, observer sees red colour on the top and violet on the

bottom.

Hence, the correct answer is option A.

Solution 16

$$egin{aligned} t_2 - t_1 &= 5 imes 10^{-10} \ &\Rightarrow rac{d}{v_B} - rac{d}{v_A} = 5 imes 10^{-10} \ & ext{and, } rac{v_B}{v_A} = rac{\mu_A}{\mu_B} = rac{1}{2} \ &\Rightarrow d \left(1 - rac{v_B}{v_A}
ight) = 5 imes 10^{-10} imes v_B \ &\Rightarrow d \left(1 - rac{1}{2}
ight) = 5 imes 10^{-10} imes v_B \ &\Rightarrow d = 10 imes 10^{-10} imes v_B m \ &\Rightarrow d = 5 imes 10^{-10} imes v_A m \end{aligned}$$

Hence, the correct answer is option A.

Solution 17

$$egin{array}{l} dots & K_m = rac{hc}{\lambda} - \phi \ \Rightarrow & K = rac{1230}{800} - \phi \ ext{and, } & 2K = rac{1230}{500} - \phi \ \Rightarrow & 2 imes rac{1230}{800} - 2\phi = rac{1230}{500} - \phi \ \Rightarrow & \phi = & 0.615 \; ext{eV} \end{array}$$

Hence, the correct answer is option C.

Solution 18

$$\therefore mvr = \frac{nh}{2\pi}$$

$$\Rightarrow mv = \frac{nh}{2\pi r}$$

Hence, the correct answer is option A.

$$\therefore \overrightarrow{\mu} = \frac{q\overrightarrow{L}}{2m}$$
 $\Rightarrow \overrightarrow{\mu} = \frac{-e\overrightarrow{L}}{2m}$

Hence, the correct answer is option B.

Solution 20

Given circuit is equivalent to an AND gate.

- ∴ A B Y
 - 0 0 0
 - $0 \quad 1 \quad 0$
 - 1 0 0
 - 1 1 1

Hence, the correct answer is option A.

Solution 21

$$F_R d = \frac{1}{2} \mathrm{mv}^2$$

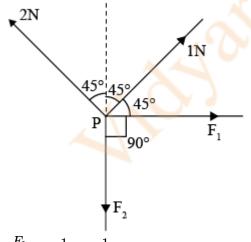
$$rac{d_2}{d_1}=\left(rac{v_2}{v_1}
ight)^2=\left(rac{1}{3}
ight)^2$$

$$d_2=d_1 imes rac{1}{9}=3 ext{ m}$$

Solution 22

$$F_1=+2 imesrac{1}{\sqrt{2}}-rac{1}{\sqrt{2}}=rac{1}{\sqrt{2}}$$

$$F_2=2 imesrac{1}{\sqrt{2}}+rac{1}{\sqrt{2}}=rac{3}{\sqrt{2}}$$



$$\frac{F_1}{F_2} = \frac{1}{3} = \frac{1}{x}$$

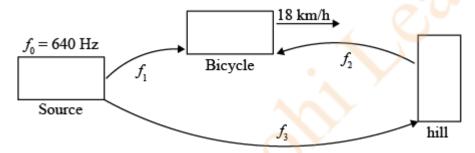
$$\Rightarrow x = 3$$

$$egin{aligned} rac{rac{F}{A}}{rac{\Delta L}{L}} &= Y \ \Rightarrow \Delta L = rac{FL}{AY} \ rac{\Delta L_2}{\Delta L_1} &= \left(rac{F_2}{F_1}
ight) imes \left(rac{L_2}{L_1}
ight) imes \left(rac{A_1}{A_2}
ight) \ &= 4 imes 4 imes rac{1}{16} = 1 \ \Delta L_2 &= \Delta L_1 = 5 \, ext{ cm}. \end{aligned}$$

Solution 24

$$\Delta L_1 = \alpha_1 L_1 \Delta T$$
 $\Delta L_2 = \alpha_2 L_2 \Delta T$
 $\alpha_1 L_1 = \alpha_2 L_2$
 $1.2 \times 10^{-5} \times L_1 = 1.8 \times 10^{-5} L_2$
 $L_1 = \frac{1.8}{1.2} \times 40 = 60 \text{ cm}$

Solution 25



$$f_1 = f_0 \left(\frac{320 - 5}{320} \right) = 640 \left(\frac{315}{320} \right)$$
 $= 630 \text{ Hz}$

$$f_3=f_0$$
 [No relative motion] $f_1{=}f_0\left(rac{320+5}{320}
ight)=640\left(rac{325}{320}
ight)$ $=650$

Beat frequency =
$$f_2 - f_1$$

= 650 - 630 = 20 Hz

Solution 26

$$\rho = 2 \,\mu\text{c/cm}^3$$

 $R = 6 \,\text{m}$

Number of lines of force per unit area = Electric field at surface.

$$= \frac{KQ}{R^2}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{\rho \frac{4}{3}\pi R^3}{R^2}$$

$$= \frac{\rho R}{3\epsilon_0}$$

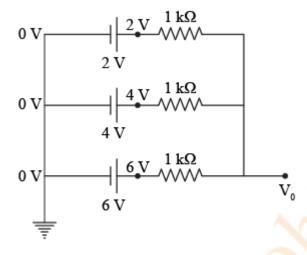
$$= \frac{2\times 10^{-6}\times 10^6\times 6}{3\times 8.85\times 10^{-12}}$$

$$= 0.45197 \times 10^{12}$$

$$= 45.19 \times 10^{10} \text{ N/C}$$

$$\simeq 45 \times 10^{10}$$

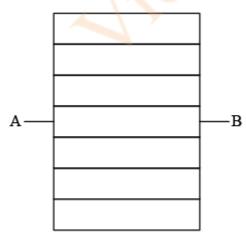
Solution 27



Using Kirchhoff's junction rule.
$$rac{2-V_0}{1}+rac{4-V_0}{1}+rac{6-V_0}{1}=0$$

$$12-3V_0=0$$

$$V_0 = 4 \mathrm{V}$$



$$RAB = R$$

$$R=rac{1}{8}igg(ext{Resistance of one wire}igg) \ =rac{1}{8}
horac{l}{\pirac{d^2}{4}}=rac{
ho l}{2\pi d^2}$$

Resistance of copper wire of length 2I and diameter X = R.

$$horac{2l}{\pirac{x^2}{4}}=R$$

$$\frac{8\rho l}{\pi x^2} = \frac{\rho l}{2\pi d^2}$$

$$16d^2=x^2$$

$$x = 4d$$

Solution 29

Energy corresponding to wavelength 4000 Å

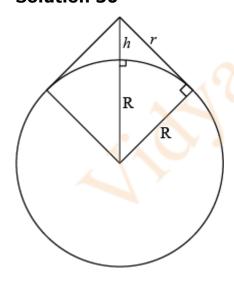
$$E = \frac{hc}{\lambda}$$

$$=rac{6.6 imes10^{-34} imes3 imes10^{8}}{4000 imes10^{-10} imes1.6 imes10^{-19}}\mathrm{eV}$$

$$=\frac{12400}{4000}$$

$$=3.1\,\mathrm{eV}$$

$$pprox 3~{
m eV}$$



$$egin{aligned} r &= \sqrt{\left(h+R
ight)^2 - R^2} \cong \sqrt{2hR} \ A &= rac{6.03 imes 10^5}{100} \ \pi r^2 &= 6.\,03 imes 10^3 \ \pi 2Rh &= 6.\,03 imes 10^3 \ h &= rac{6.03 imes 10^3}{2 imes \pi imes R} = 0.\,015 imes 10^3 ext{ m} \ &= 150 ext{ m} \end{aligned}$$

Solution 31

 $SO_2Cl_2 + 2H_2O \rightarrow H_2SO_4 + 2HCI$

Moles of NaOH required for complete neutralisation of resultant acidic mixture = 16 moles

And 1 mole of SO₂Cl₂ produced 4 moles of H⁺.

∴ Moles of
$$SO_2Cl_2$$
 used will be = $\frac{16}{4}$ = 4 moles

Hence, the correct answer is option C.

Solution 32

If n = 3, then possible values of l = 0, 1, 2 But in option (C), the value of l is given '3', this is not possible.

Hence, the correct answer is option C.

Solution 33

 ΔT_f of formic acid = 0.0405°C

Concentration = 0.5 mL/L

and density = 1.05 g/mL

- \therefore Mass of formic acid in solution = 1.05 \times 0.5 g = 0.525 g
- ∴ According to Van't Hoff equation,

$$\Delta T_f = iK_f \cdot m$$

$$0.0405 = i \times 1.86 \times \frac{0.525}{46 \times 1}$$

(Assuming mass of 1 L water = kg)

$$i = \frac{0.0405 \times 46}{1.86 \times 0.525} = 1.89 \approx 1.9$$

Hence, the correct answer is option C.

: In final solution 2 millimoles of NH₄Cl is present.

$$\therefore$$
 [NH₄ Cl] = $\frac{1}{30}$ molar

$$\rho \mathbf{H} = \frac{1}{2} \left[\rho k_{\text{w}} - \rho \mathbf{k}_{\text{b}} - \log C \right]
= \frac{1}{2} \left[14 - 5 - (-1.48) \right]
= 5.24$$

Hence, the correct answer is option C.

Solution 35

Here, we have to match the reactions with their correct catalyst:

(A)
$$N_2(g) + 3H_2(g) \xrightarrow{\operatorname{Fe_x O_y} + \operatorname{K_2O} + \operatorname{Al_2 O_3}} 2NH_3(g)$$

(B) CO(g) +
$$3H_2(g) \xrightarrow{Ni} CH_4(g) + H_2O(g)$$

(C) CO(g) +
$$H_2(g) \stackrel{\mathrm{Cu}}{\to} \mathsf{HCHO}(g)$$

(D) CO(g) +
$$2H_2(g) \xrightarrow{\operatorname{Cu}/\operatorname{ZnO-Cr}_2 \operatorname{O}_3} \operatorname{CH}_3\operatorname{OH}(g)$$

Hence, the correct answer is option C.

Solution 36

The element with electronic configuration [Rn] $5f^{14}6d^{1}7s^{2}$ has atomic number $\rightarrow 103$

: Its IUPAC name is : Unniltrium

Hence, the correct answer is option D.

Solution 37

The compound(s) that are removed as a slag during the extraction of copper is:

$$\mathrm{FeS} \stackrel{\mathrm{O_2/SiO_2}}{\longrightarrow} \mathrm{FeSiO_3} + \mathrm{SO_2}$$

: Only iron oxide (FeO) formed slag during extraction of copper.

Hence, the correct answer is option D.

Solution 38

The reaction of KMnO₄ with H_2O_2 in acidic medium is as $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$ \therefore Mn²⁺ will be formed as the product.

Hence, the correct answer is option A.

The increasing order of density of alkali metals as

$$egin{array}{lll} {
m Li} & < {
m K} \ 0.53 & < {
m Na} \ 0.86 & 0.97 & < {
m Rb} \ 1.53 & < {
m Cs} \ 1.87 \ \left({
m in \ g/ \, dm^3}
ight) \end{array}$$

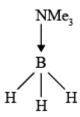
'K' metal has less density as compare to 'Na' metal.

Hence, the correct answer is option A.

Solution 40

$$2\,BF_3 + 6\,NaH \ \stackrel{450\,K}{\longrightarrow} \ B_2H_6 + 6\,NaF$$

$$\begin{array}{ccc} B_2F_6 + 2\,NMe_3 & \longrightarrow & 2BH_3 \cdot NMe_3 \\ {}_{(A)} & {}_{(B)} \end{array}$$



: Geometry of boron will be tetrahedral.

Hence, the correct answer is option B.

Solution 41

$$\mathrm{Br}_2 \ + \underbrace{5\mathrm{F}_2}_{\mathrm{(Excess)}} \longrightarrow 2\,\mathrm{BrF}_5$$

If BrF₅ undergoes hydrolysis it will produce halide.

Hence, the correct answer is option B.

Solution 42

Photochemical smog contain:

Ozone, nitric oxide, organic compounds, nitrogen dioxide, formaldehyde.

 \therefore SO₂ is not the part of photochemical smog.

Hence, the correct answer is option C.

*Ants produces formic acid in their venom gland.

$$\begin{array}{c|c}
O & O \\
\parallel & \parallel \\
H - C - H \xrightarrow{Oxidation} H - C - OH \\
(a) & (b)
\end{array}$$

Hence, the correct answer is option D.

Solution 44

Hence, the correct answer is option B.

 $Na_2Cr_2O_7$, H_2SO_4/H_2O is the strongest oxidising agent and it will oxidise 1° alcohol into acids.

Hence, the correct answer is option D.

Solution 46

All the given reactions can be explained if organic compound (A) is phthalic acid.

Hence, the correct answer is option C.

Solution 47

Melamine polymer is formed by the condensation polymerisation of melamine and formaldehyde.

Hence, the correct answer is option A.

Solution 48

During the denaturation of proteins hydrogen bonds are disturbed. As a result, the secondary and tertiary structures are destroyed but the primary structures remain intact.

Hence, the correct answer is option A.

Solution 49

Drugs that bind to the receptor site and inhibit its natural function are called Antagonists.

Hence, the correct answer is option B.

Solution 50

Glycerol, on heating with $KHSO_4$, undergoes dehydration to give unsaturated aldehyde called acrolein. So, statement I is correct.

$$\begin{array}{c} H-CH-OH \\ HO-C-H \\ | \\ H-CH-OH \end{array} \xrightarrow{KHSO_4 \atop -2H_2O} \begin{bmatrix} CH-OH \\ | \\ C \\ | \\ CH_2 \end{bmatrix} \xrightarrow{CH=O \atop CH} CH$$

$$\begin{array}{c} CH=O \\ | \\ CH \\ CH_2 \end{array}$$

$$\begin{array}{c} CH=O \\ | \\ CH_2 \end{array}$$

Acrolein has piercing unpleasant smell. So, statement-II is incorrect.

Hence, the correct answer is option C.

Solution 51

According to molecules orbital theory. The electronic configurations of the given species are

$$egin{aligned} egin{aligned} ar{N}_2: \ \sigma 1 s^2 \sigma * 1 s^2 \sigma 2 s^2 \sigma * 2 s^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \sigma 2 p_z^2 \ egin{aligned} ar{N}_2^+: \ \sigma 1 s^2 \sigma * 1 s^2 \sigma 2 s^2 \sigma * 2 s^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \sigma 2 p_z^1 \ ar{N}_2^-: \ \sigma 1 s^2 \sigma * 1 s^2 \sigma 2 s^2 \sigma * 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma * 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi * 2 p_x^2 \ egin{aligned} ar{N}_2^-: \ \sigma 1 s^2 \sigma 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 &= \pi 2 p_y^2 \pi 2 p_x^2 \ ar{N}_2^-: \ ar{N}_2^-:$$

$$N_2^{2-}:\ \sigma 1s^2\sigma * 1s^2\sigma 2s^2\sigma * 2s^2\sigma 2p_z^2\pi 2p_x^2 = \pi 2p_y^2\pi * 2p_x^1 = \pi * 2p_y^1$$

$$\mathrm{O}_2:\ \sigma 1\mathrm{s}^2\sigma * 1\mathrm{s}^2\sigma 2\mathrm{s}^2\sigma * 2\mathrm{s}^2\sigma 2\mathrm{p}_\mathrm{z}^2\pi 2\mathrm{p}_\mathrm{z}^2 = \pi 2\mathrm{p}_\mathrm{y}^2\pi * 2\mathrm{p}_\mathrm{x}^1 = \pi * 2\mathrm{p}_\mathrm{y}^1$$

$$\mathrm{O_2^+}:\ \sigma 1\mathrm{s}^2 \sigma * 1\mathrm{s}^2 \sigma 2\mathrm{s}^2 \sigma * 2\mathrm{s}^2 \sigma 2\mathrm{p}_\mathrm{z}^2 \pi 2\mathrm{p}_\mathrm{z}^2 = \pi 2\mathrm{p}_\mathrm{y}^2 \pi * 2\mathrm{p}_\mathrm{1}^\mathrm{x}$$

$$\mathrm{O}_2^-:\ \sigma 1\mathrm{s}^2\sigma * 1\mathrm{s}^2\sigma 2\mathrm{s}^2\sigma * 2\mathrm{s}^2\sigma 2\mathrm{p}_\mathrm{z}^2\pi 2\mathrm{p}_\mathrm{z}^2 = \pi 2\mathrm{p}_\mathrm{y}^2\pi * 2\mathrm{p}_\mathrm{x}^2 = \pi * 2\mathrm{p}_\mathrm{y}^1$$

$$O_2^{2-}: \ \sigma 1 s^2 \sigma * 1 s^2 \sigma 2 s^2 \sigma * 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 = \pi 2 p_y^2 \pi * 2 p_x^2 = \pi * 2 p_y^2$$

Diamagnetic species are N_2 and O_2^{2-}

: Number of species showing diamagnetism = 2

Solution 52

Enthalpy of combustion of propane, graphite and H₂ at 298K are

$$egin{aligned} \mathrm{C_3H_8}\Big(\mathrm{g}\Big) + 5\mathrm{O_2}\Big(\mathrm{g}\Big) &
ightarrow 3\,\mathrm{CO_2}\Big(\mathrm{g}\Big) + 4\mathrm{H_2O}\Big(\mathrm{l}\Big), \;\; \Delta\,\mathrm{H_1} = -2220\;\;\mathrm{kJ}\;\;\mathrm{mol}^{-1} \ \mathrm{C}\Big(\mathrm{graphite}\Big) \; + \;\mathrm{O_2}\Big(\mathrm{g}\Big) \;
ightarrow \mathrm{CO_2}\Big(\mathrm{g}\Big), \;\; \Delta\,\mathrm{H_2} = -393.\,5\;\;\mathrm{kJ}\;\;\mathrm{mol}^{-1} \end{aligned}$$

$$\mathrm{H_2}\!\left(\mathrm{g}
ight) + rac{1}{2}\mathrm{O_2}\!\left(\mathrm{g}
ight) \
ightarrow \mathrm{H_2O}\!\left(\mathrm{l}
ight), \ \Delta\,\mathrm{H_3} = -285.8 \ \mathrm{kJ} \ \mathrm{mol}^{-1}$$

The desired reaction is $3C(graphite) + 4H_2(g) \rightarrow C_3H_8(g)$

$$egin{aligned} \Delta \mathrm{H_{f}} &= 3 \ \Delta \ \mathrm{H_{2}} + 4 \ \Delta \ \mathrm{H_{3}} - \Delta \mathrm{H_{1}} \ &= 3 (-393.5) + 4 (-285.8) - (-2220) \ &= -103.7 \ \mathrm{kJ \ mol}^{-1} \end{aligned}$$

$$|\Delta \mathrm{H_f}|{\simeq}104~\mathrm{kJ}~\mathrm{mol}^{-1}$$

From ideal gas equation,
$$P \propto \frac{1}{V}$$

$$P_1V_1 = P_2V_2$$
 Pressure of the gas = 4 - 0.4 = 3.6 atm 3.6 V_1 = P_2 (2 V_1)

 $P_2 = 1.8 \text{ atm}$

Hence, new pressure of moist gas is 1.8 + 0.4 = 2.2 atm $= 22 \times 10^{-1}$ atm

Solution 54

 $A: Zn \rightarrow Zn^{2+} + 2e^{-}$

 $C:~Sn^{+x}+xe^-\to~Sn$

$$E^{o}_{Cell} = E^{o}_{Zn\,|\,Zn^{2+}} + E^{o}_{Sn^{+x}\,|\,Sn}$$

$$\Rightarrow$$
 0.763 + 0.008 = 0.771 V

From Nernst equation,

$$E_{Cell} = E_{Cell}^o rac{-2.303~RT}{nF} log Q$$

$$0.801 = 0.771 - \frac{0.06}{n} log \ 10^{-2}$$

$$0.03 = \frac{0.06}{\mathrm{n}} imes 2$$

$$n = 4$$

Solution 55

 $(t_{1/2})_A = 240 \text{ s when } P = 500 \text{ torr}$

 $(t_{1/2})_A = 4 \text{ min} = 4 \times 60 = 240 \text{ sec when } P = 250 \text{ torr}$

If means half-life is independent of concentration of reactant present.

 \therefore Order of reaction = 1

Solution 56

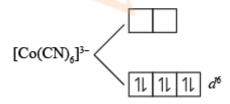
In all complexes, Co is present in +3 oxidation state and all complexes are low spin or inner orbital complex.

Stronger the ligand, higher the crystal field splitting.

So, order of crystal field splitting is

 $[Co(CN)_6]^{3-} > [Co(NH_3)_6]^{3+} > [Co(NH_3)_5(H_2O)]^{3+} > [CoCl(NH_3)_5]^{2+}$

Shortest wavelength is shown by complex having maximum crystal field splitting.



Spin only magnetic moment = $\sqrt{0(0+2)}=0~B.~M$

Solution 57

Co³⁺ will not liberate H₂ gas an reaction with dilute acid

$${
m E}^{
m o}_{{
m Co}^{3+}\,/\,{
m Co}^{2+}}=+1.\,97$$

And Co^{3+} has electronic configuration = [Ar] $3d^6$

- ∴ 4 unpaired e⁻ are present in it
- $\dot{}$ Spin-only magnetic moment $=\sqrt{4(4+2)}~\mathrm{B.\,M.} = 4.92~\mathrm{B.\,M.} pprox 5~\mathrm{B.\,M.}$

Solution 58

NH₃ gas is neutralized by 2.5 mL of 2 M H₂SO₄

- \therefore Moles of NH₃ neutralized = $2.5 \times 2 \times 2$ millimoles = 10×10^{-3} moles
- \therefore Weight of N present in compound will be = $10 \times 10^{-3} \times 14 = 0.14$ g
- ∴ % of 'N' in compound

$$= \frac{0.14}{0.25} \times 100$$

$$= 56\%$$

Solution 59

 C_4H_5N

$$egin{aligned} ext{DBE} = & (ext{C} + 1) - \left(rac{ ext{H} + ext{X} - ext{N}}{2}
ight) \ = & 4 + 1 - \left(rac{5 - 1}{2}
ight) = 5 - 2 = 3 \end{aligned}$$

3 double bond equivalent are present in compound

$$C \equiv N$$

Only $1 sp^3$ hybridised carbon is there (Keeping compound as acyclic)

2 chiral carbons are there in product A.

Solution 61

Case 1: If f(3) = 3 then f(1) and f(2) take 1 OR 2

No. of ways = 2.6 = 12

Case 2: If f(3) = 5 then f(1) and f(2) take 2 OR 3 OR 1 and 4

No. of ways = 2.6.2 = 24

Case 3: If f(3) = 2 then f(1) = f(2) = 1

No. of ways = 6

Case 4: If f(3) = 4 then f(1) = f(2) = 2

No. of ways = 6

OR f(1) and f(2) take 1 and 3

No. of ways = 12

Case 5: If f(3) = 6 then $f(1) = f(2) = 3 \Rightarrow 6$ ways

OR f(1) and f(2) take 1 and 5 \Rightarrow 12 ways

OR f(2) and f(1) take 2 and 4 \Rightarrow 12 ways

Hence, the correct answer is option B.

Solution 62

$$x^4 + x^3 + x^2 + x + x + 1 = 0 \,\,\, ext{OR} \,\,\,rac{x^5 - 1}{x - 1} = 0 \,\, \left(x
eq 1
ight)$$

So roots are $e^{\frac{i2\pi}{5}}$, $e^{\frac{i4\pi}{5}}$, $e^{\frac{i6\pi}{5}}$, $e^{\frac{i8\pi}{5}}$

i. e. α , β , γ and δ

From properties of n^{th} root of unity

$$1^{2021} + \alpha^{2021} + \beta^{2021} + \gamma^{2021} + \delta^{2021} = 0$$

 $\Rightarrow \alpha^{2021} + \beta^{2021} + \gamma^{2021} + \delta^{2021} = -1$

Hence, the correct answer is option B.

Solution 63

$$\mathrm{S}_n=\left\{z\in\mathrm{C}:\left|z-3+2i\right|=rac{n}{4}
ight\}$$
 represents a circle with centre C1(3, -2) and radius $r_1=rac{n}{4}$

Similarly T $_n$ represents circle with centre C $_2(2,-3)$ and radius $r_2=rac{1}{n}$

As
$$S_n \cap T_n = \phi$$

$$C_1C_2 > r_1 + r_2$$
 OR $C_1C_2 < |r_1 - r_2|$
 $\sqrt{2} > \frac{n}{4} + \frac{1}{2}$ OR $\sqrt{2} < \left| \frac{n}{4} - \frac{1}{n} \right|$

n = 1, 2, 3, 4 n may take infinite values

Disclaimer: No option is correct.

$$\Delta = \begin{vmatrix} 3\sin 3\theta & -1 & 1 \\ 3\cos 2\theta & 4 & 3 \\ 6 & 7 & 7 \end{vmatrix}$$
= $3\sin 3\theta(7) + 1(21\cos 2\theta - 18) + 1(21\cos 2\theta - 24)$
 $\Delta = 21\sin 3\theta + 42\cos 2\theta - 42$
For no solution
 $\sin 3\theta + 2\cos 2\theta = 2$
 $\Rightarrow \sin 3\theta = 2\cdot 2\sin^2 \theta$
 $\Rightarrow 3\sin \theta - 4\sin^3 \theta = 4\sin^2 \theta$
 $\Rightarrow \sin (3 - 4\sin \theta - 4\sin^2 \theta) = 0$
 $\sin \theta = 0 \text{ OR } \sin \theta = \frac{1}{2}$
 $\theta = \pi, \ 2\pi, \ 3\pi, \ \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}, \frac{17\pi}{6}$

Hence, the correct answer is option B.

Solution 65

$$\begin{split} &\lim_{n\to\infty} \left(\sqrt{n^2-n-1}+n\alpha+\beta\right)=0\\ &=\lim_{n\to\infty} \left[\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}+\alpha+\frac{\beta}{n}\right]=0\\ &\therefore \ \alpha=-1\\ &\text{Now},\\ &\lim_{n\to\infty} n\left[\left(1-\frac{1}{n}-\frac{1}{n^2}\right)^{\frac{1}{2}}+\frac{\beta}{n}-1\right]=0\\ &=\lim_{n\to\infty} \frac{\left(1-\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n^2}\right)+\ldots\right)+\frac{\beta}{n}-1}{\frac{1}{n}}=0\\ &\Rightarrow \beta-\frac{1}{2}=0\\ &\therefore \ \beta=\frac{1}{2}\\ &\text{Now},\ 8\left(\alpha+\beta\right)=8\left(-\frac{1}{2}\right)=-4 \end{split}$$

Hence, the correct answer is option C.

Given,
$$f\left(x
ight)=\underbrace{\left(x^{2}-2x+7
ight)}_{f_{1}\left(x
ight)}\underbrace{e^{\left(4x^{3}-12x^{2}-180x+31
ight)}}_{f_{2}\left(x
ight)}$$

$$f_1(x) = x^2 - 2x + 7$$
 $f_1(x) = 2x - 2$, so $f(x)$ is decreasing in $[-3, 0]$ and positive also $f_2(x) = e^{4x^3 - 12x^2 - 180x + 31}$
 $f_2'(x) = e^{4x^3 - 12x^2 - 180x + 31}$. $12x^2 - 24x - 180$
 $= 12(x - 5)(x + 3)e^{4x^3 - 12x^2 - 180x + 31}$

So, $f_2(x)$ is also decreasing and positive in $\{-3, 0\}$ \therefore absolute maximum value of f(x) occurs at x = -3 \therefore a = -3

Hence, the correct answer is option B.

$$f(x) = y = ax^{3} + bx^{2} + cx + 5 \qquad ...(i)$$

$$\frac{dy}{dx} = 3ax^{2} + 2bx + c \qquad(ii)$$
Touches x-axis at $P(-2, 0)$

$$\Rightarrow y|_{x = -2} = 0$$

$$\Rightarrow -8a + 4b - 2c + 5 = 0 \qquad(iii)$$
Touches x-axis at $P(-2, 0)$ also implies
$$\frac{dy}{dx}|_{x=-2} = 0$$

$$\Rightarrow 12a - 4b + c = 0 \qquad(iv)$$

$$y = f(x) \text{ cuts } y\text{-axis at } (0, 5)$$
Given, $\frac{dy}{dx}|_{x=0} = c = 3 \qquad(v)$
From (iii), (iv) and (v)
$$a = -\frac{1}{2}, b = -\frac{3}{4}, c = 3$$

$$\Rightarrow f(x) = \frac{-x^{2}}{2} - \frac{3}{4}x^{2} + 3x + 5$$

$$f'(x) = \frac{-3}{2}x^{2} - \frac{3}{2}x + 3$$

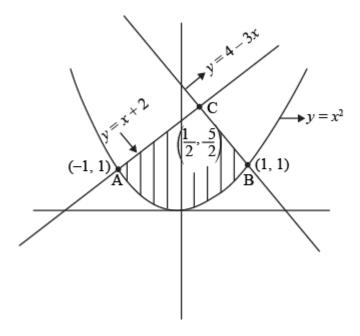
$$= \frac{-3}{2}(x+2)(x-1)$$

$$f'(x) = 0$$
 at $x = -2$ and $x = 1$
By first derivative test $x = 1$ in point of local maximum
Hence local maximum value of $f(x)$ is $f(1)$
i.e., $\frac{27}{4}$

Hence, the correct answer is option A.

Solution 68

$$A = \{(x, y) : x^2 \le y \le \min \{x + 2, 4 - 3x\}$$

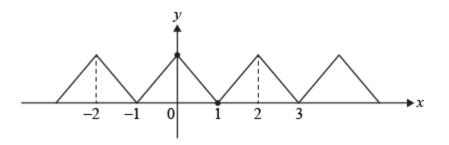


So area of required region

$$egin{aligned} A &= \int\limits_{-1}^{rac{1}{2}} ig(x+2-x^2ig) dx + \int\limits_{rac{1}{2}}^{1} ig(4-3x-x^2ig) dx \ &= \left[rac{x^2}{2} + 2x - rac{x^3}{3}
ight]_{-1}^{rac{1}{2}} + \left[4x - rac{3x^2}{2} - rac{x^3}{3}
ight]_{rac{1}{2}}^{1} \ &= \left(rac{1}{8} + 1 - rac{1}{24}
ight) - \left(rac{1}{2} - 2 + rac{1}{3}
ight) + \left(4 - rac{3}{2} - rac{1}{3}
ight) - \left(2 - rac{3}{8} - rac{1}{24}
ight) \ &= rac{17}{6} \end{aligned}$$

Hence, the correct answer is option B.

$$f\left(x
ight) = \left\{egin{aligned} x-[x], & ext{if } [x] ext{ is odd} \ 1+[x]-x, & ext{if } [x] ext{ is even.} \end{aligned}
ight.$$
 Graph of $f(x)$



f(x) is an even and periodic function

So,
$$\frac{\pi^2}{10} \int_{-10}^{10} f(x) \cos \pi x \, dx = \frac{\pi^2}{10} \cdot 20 \int_{0}^{1} f(x) \cos \pi x \, dx$$

$$= 2\pi^2 \int_{0}^{1} (1-x) \cos \pi x \, dx$$

$$= 2\pi^2 \left\{ (1-x) \frac{\sin \pi x}{\pi} \Big|_{0}^{1} - \frac{\cos \pi x}{\pi^2} \Big|_{0}^{1} \right\} = 4$$

Hence, the correct answer is option A.

Solution 70

$$\frac{dy}{dx} = \frac{2e^{2x} - 6e^{-x} + 9}{2 + 9e^{-2x}} = e^{2x} - \frac{6e^{-x}}{2 + 9e^{-2x}}$$

$$\int dy = \int e^{2x} dx - 3 \int \frac{e^{-x}}{1 + \left(\frac{3e^{-x}}{\sqrt{2}}\right)^2} dx$$

$$= \frac{e^{2x}}{2} + 3 \int \frac{dt}{1 + \left(\frac{3t}{\sqrt{2}}\right)^2}$$

$$= \frac{e^{2x}}{2} + \sqrt{2} \tan^{-1} \frac{3t}{\sqrt{2}} + C$$

$$y = \frac{e^{2x}}{2} + \sqrt{2} \tan^{-1} \left(\frac{3e^{-x}}{\sqrt{2}}\right) + C$$
It is given that the curve passes through $\left(0, \frac{1}{2} + \frac{\pi}{2\sqrt{2}}\right)$

$$\frac{1}{2} + \frac{\pi}{2\sqrt{2}} = \frac{1}{2} + \sqrt{2} \tan^{-1} \left(\frac{3}{\sqrt{2}}\right) + C$$

$$\Rightarrow C = \frac{\pi}{2\sqrt{2}} - \sqrt{2} \tan^{-1} \left(\frac{3}{\sqrt{2}}\right)$$

Now if $\left(\alpha,\ \frac{1}{2}e^{2\alpha}\right)$ satisfies the curve, then

$$\begin{split} &\frac{1}{2}e^{2\alpha} = \frac{e^{2\alpha}}{2} + \sqrt{2}\tan^{-1}\left(\frac{3e^{-\alpha}}{\sqrt{2}}\right) + \frac{\pi}{2\sqrt{2}} - \sqrt{2}\tan^{-1}\left(\frac{3}{\sqrt{2}}\right) \\ &\tan^{-1}\left(\frac{3}{\sqrt{2}}\right) - \tan^{-1}\left(\frac{3e^{-\alpha}}{\sqrt{2}}\right) = \frac{\pi}{2\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{\pi}{4} \\ &\frac{\frac{3}{\sqrt{2}} - \frac{3e^{-\alpha}}{\sqrt{2}}}{1 + \frac{9}{2}e^{-\alpha}} = 1 \\ &\frac{3}{\sqrt{2}}e^{\alpha} - \frac{3}{\sqrt{2}} = e^{\alpha} + \frac{9}{2} \\ &e^{\alpha} = \frac{\frac{9}{2} + \frac{3}{\sqrt{2}}}{\frac{3}{\sqrt{2}} - 1} = \frac{3}{\sqrt{2}}\left(\frac{3 + \sqrt{2}}{3 - \sqrt{2}}\right) \end{split}$$

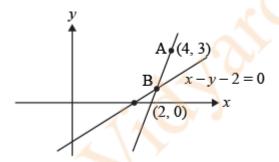
Hence, the correct answer is option B.

$$egin{aligned} & \left(x-y^2
ight)\!dx + yig(5x+y^2ig)dy = 0 \ & yrac{dy}{dx} = rac{y^2-x}{5x+y^2} \ & ext{Let } y^2 = t \ & rac{1}{2} \cdot rac{dt}{dx} = rac{t-x}{5x+t} \ & ext{Now substitute, } t = vx \ & rac{dt}{dx} = v + xrac{dv}{dx} \end{aligned}$$

$$egin{aligned} rac{1}{2} \left\{ v + x rac{dv}{dx}
ight\} &= rac{v-1}{5+v} \ x rac{dv}{dx} &= rac{2v-2}{5+v} - v = rac{-3v-v^2-2}{5+v} \ \int rac{5+v}{v^2+3v+2} dv &= \int -rac{dx}{x} \ \int rac{4}{v+1} dv - \int rac{3}{v+2} dv &= -\int rac{dx}{x} \ 4 \ln \left| v + 1
ight| - 3 \ln \left| v + 2
ight| = - \ln x + \mathrm{InC} \ \left| rac{(v+1)^4}{(v+2)^3}
ight| &= rac{C}{x} \ \left| rac{\left(rac{y^2}{x} + 1
ight)^4}{\left(rac{y^2}{x} + 2
ight)^3}
ight| = rac{C}{x} \ \left| \left(y^2 + 2x
ight)^3
ight| \end{aligned}$$

Hence, the correct answer is option A.

Solution 72



Let inclination of required line is $\theta,$ So the coordinates of point B can be assumed as $\left(4-\frac{\sqrt{29}}{3}{\rm cos}\theta,\;3-\frac{\sqrt{29}}{3}{\rm sin}\theta\right)$

Which satisfices
$$x - y - 2 = 0$$

$$4 - rac{\sqrt{29}}{3} \mathrm{cos} heta - 3 + rac{\sqrt{29}}{3} \mathrm{sin} heta - 2 = 0$$
 $\mathrm{sin} heta - \mathrm{cos} heta = rac{3}{\sqrt{29}}$

By squaring

$$\sin 2 heta = rac{20}{29} = rac{2 an heta}{1+ an^2 heta}$$

 $an\! heta = rac{5}{2}$ only(because slope is greater than 1)

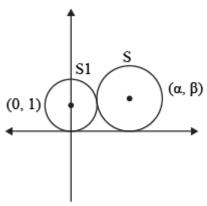
$$\sin\theta = \frac{5}{\sqrt{29}}, \cos\theta = \frac{2}{\sqrt{29}}$$

Point B:
$$\left(\frac{10}{3}, \frac{4}{3}\right)$$

Which also satisfies x + 2y = 6

Hence, the correct answer is option C.

Solution 73



Radius of circle S touching x-axis and centre (a, β) is $|\beta|$. According to given conditions

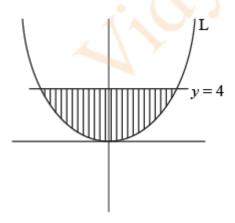
$$a^2 + (\beta - 1)^2 = (|\beta| + 1)^2$$

$$a^{2} + (\beta - 1)^{2} = (|\beta| + 1)^{2}$$

 $a^{2} + \beta^{2} - 2\beta + 1 = \beta^{2} + 1 + 2|\beta|$

$$a^2 = 4\beta$$
 as $\beta > 0$

$$\therefore$$
 Required louse is L: $x^2 = 4y$



The area of shaded region
$$=2\int_0^4 2\sqrt{y}\,dy$$

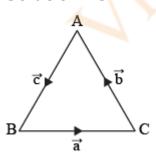
$$=4\cdot\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^4$$

$$=\frac{64}{3} \text{ square units.}$$

Hence, the correct answer is option C.

Solution 74

Hence, the correct answer is option C*.



$$\therefore \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0 \qquad \dots (i)$$
then $\overrightarrow{a} + \overrightarrow{c} = -\overrightarrow{b}$
then $(\overrightarrow{a} + \overrightarrow{c}) \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{b}$

$$\therefore \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{b} = \overline{0} \qquad \dots (i)$$
For $(S1)$:
$$\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{b} \end{vmatrix} - |\overrightarrow{c}| = 6(2\sqrt{2} - 1)$$

$$\begin{vmatrix} (\overrightarrow{a} + \overrightarrow{c}) \times \overrightarrow{b} \end{vmatrix} - |\overrightarrow{c}| = 6(2\sqrt{2} - 1)$$

$$\begin{vmatrix} \overrightarrow{c} \end{vmatrix} = 6 - 12\sqrt{2} \text{ (not possible)}$$

Hence
$$(S1)$$
 is not correct

For
$$(S2)$$
: from $(i)\overrightarrow{b} + \overrightarrow{c} = -\overrightarrow{a}$
 $\Rightarrow \overrightarrow{b} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{b} = -\overrightarrow{a} \cdot \overrightarrow{b}$
 $\Rightarrow 12 + 12 = -6\sqrt{2} \cdot 2\sqrt{3} \cos(\pi - \angle ACB)$

$$\therefore \cos\left(\angle ACB\right) = \sqrt{\frac{2}{3}}$$

$$\therefore \angle ACB = \cos^{-1} \sqrt{\frac{2}{3}}$$

$$\therefore$$
 S(2) is correct.

Hence, the correct answer is option C.

Solution 76

If n is number of trails, p is probability of success and q is probability of unsuccess then,

Mean = np and variance = npq. Here np + npq = 24 ...(i) $np \cdot npq = 128$...(ii) and q = 1 - p ...(iii) From eq. (i), (ii) and (iii): $p = q = \frac{1}{2}$ and n = 32. ∴ Required probability = p(X = 1) + p(X = 2) = ${}^{32}C_1 \cdot \left(\frac{1}{2}\right)^{32} + {}^{32}C_2 \cdot \left(\frac{1}{2}\right)^{32}$ = $\left(32 + \frac{32 \times 31}{2}\right) \cdot \frac{1}{2^{32}}$ = $\frac{33}{2^{28}}$

Hence, the correct answer is option C.

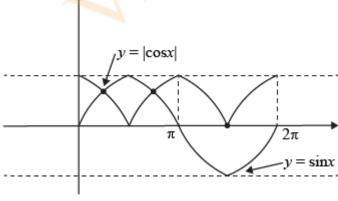
Solution 77

For $x^2 + ax + \beta > 0 \ \forall \ x \in R$ to hold, we should have $a^2 - 4\beta < 0$ If a = 1, β can be 1, 2, 3, 4, 5, 6 i.e., 6 choices If a = 2, β can be 2, 3, 4, 5, 6 i.e., 5 choices If a = 3, β can be 3, 4, 5, 6 i.e., 4 choices If a = 4, β can be 5 or 6 i.e., 2 choices If a = 6, No possible value for β i.e., 0 choices Hence total favourable outcomes a = 6 + 5 + 4 + 2 + 0 + 0 = 17 Total possible choices for $a = 6 \times 6 = 36$ Required probability $a = \frac{17}{36}$

Hence, the correct answer is option A.

Solution 78

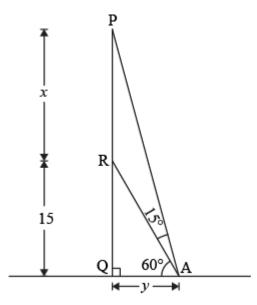
Number of solutions of the equation $|\cos x| = \sin x$ for $x \in [-4\pi, 4\pi]$ will be equal to 4 times the number of solutions of the same equation for $x \in [0, 2\pi]$. Graphs of $y = |\cos x|$ and $y = \sin x$ are as shown below.



Hence, two solutions of given equation in $[0, 2\pi]$ \Rightarrow Total of 8 solutions in $[-4\pi, 4\pi]$

Hence, the correct answer is option C.

Solution 79



From
$$\Delta$$
APQ
$$\frac{x+15}{y} = \tan 75^{\circ} \qquad \qquad \dots \left(i\right)$$
 From Δ RQA,
$$\frac{15}{y} = \tan 60^{\circ} \qquad \qquad \dots \left(ii\right)$$
 From (i) and (ii)
$$\frac{x+15}{15} = \frac{\tan 75^{\circ}}{\tan 60^{\circ}} = \frac{\tan (45^{\circ} + 30^{\circ})}{\tan 60^{\circ}} = \frac{\sqrt{3} + 1}{\left(\sqrt{3} + 1\right) \cdot \sqrt{3}}$$

On simplification, $x=10\sqrt{3}\mathrm{m}$ Hence height of the tower $=\left(15+10\sqrt{3}\right)\mathrm{m}$ $=5\left(2\sqrt{3}+3\right)$ m

Hence, the correct answer is option A.

Solution 80

Truth Table

Hence, the correct answer is option D.

Here
$$A=egin{pmatrix}2&-1&-1\\1&0&-1\\1&-1&0\end{pmatrix}$$

We get $A^2 = A$ and similarly for

We get
$$B^2 = -B$$

$$\Rightarrow B^3 = B$$

$$\therefore A^n + (\omega B)^n = A + (\omega B)^n \text{ for } n \in N$$

For ω^n to be unity n shall be multiple of 3 and for B^n to be B. n shall be 3, 5, 7, ... 99

$$n = \{3, 9, 15, \dots, 99\}$$

Number of elements = 17.

Solution 82

Arranging letter in alphabetical order A D I K M N N for finding rank of MANKIND making arrangements of dictionary we get

$$A.\ldots \rightarrow \frac{6!}{2!} = 360$$

$$D.\dots... o 360$$

$$K.\dots\dots o 360$$

$$M A D \dots \longrightarrow \frac{4!}{2!} = 12$$

$$M~A~I~\dots \dots \to 12$$

$$M\ A\ K \ldots \ldots \to 12$$

$$M A N D \dots \rightarrow 3! = 6$$

$$M\ A\ N\ I\ \ldots \ldots \to 6$$

$$M~A~N~K~D \dots \dots \to 2$$

$$M A N K I D \dots \rightarrow 1$$

$$M A N K I N D \dots \rightarrow 1$$

$$\therefore$$
 Rank of MANKIND = 1440 + 36 + 12 + 2 + 2 = 1492

General Term =
$$15C_r\left(t^2x^{\frac{1}{5}}\right)^{15-r}\left(\frac{(1-x)^{\frac{1}{10}}}{t}\right)^r$$
 for term independent on t 2(15 - r) - r = 0

$$\Rightarrow r=10 \ \therefore T_{11}=^{15}C_{10}x(1-x)$$

Maximum value of
$$x$$
(1 – x) occur at $x=\frac{1}{2}$ i.e., $\left(x\left(1-x\right)\right)_{\max}=\frac{1}{4}$ $\Rightarrow K=^{15}C_{10} imes\frac{1}{4}$ $\Rightarrow 8K=2\left(^{15}C_{10}\right)=6006$

Solution 84

 \because Roots of $2ax^2-8ax+1=0$ are $\frac{1}{p}$ and $\frac{1}{r}$ and roots of $6bx^2+12bx^2+1=0$ are $\frac{1}{q}$ and $\frac{1}{s}$.

Let
$$\frac{1}{p},\frac{1}{q},\frac{1}{r},\frac{1}{s}$$
 as $lpha-3eta,\ lpha-eta,\ lpha+eta,\ lpha+3eta$

So sum of roots 2lpha-2eta=4 and 2lpha+2eta=-2

Clearly $lpha=rac{1}{2}$ and $eta=-rac{3}{2}$

Now products of roots, $\frac{1}{p} \cdot \frac{1}{r} = \frac{1}{2a} = -5 \Rightarrow \frac{1}{a} = -10$ and

$$\frac{1}{q} \cdot \frac{1}{x} = \frac{1}{6b} = -8 \Rightarrow \frac{1}{b} = -48$$

So, $\frac{1}{a} - \frac{1}{b} = 38$

Solution 85

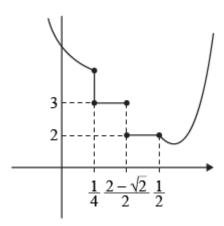
$$egin{aligned} a_1 &= b_1 = 1 \ a_n &= a_{n-1} + 2 ext{ (for } n \geq 2) \ &b_n &= a_n + b_{n-1} \ a_2 &= a_1 + 2 &= 1 + 2 &= 3 \ a_3 &= a_2 + 2 &= 3 + 2 &= 5 \ a_4 &= a_3 + 2 &= 5 + 2 &= 7 \ a_{15} &= a_{14} + 2 &= 29 \end{aligned} \qquad egin{aligned} b_n &= a_n + b_{n-1} \ b_2 &= a_2 + b_1 &= 3 + 1 &= 4 \ b_3 &= a_3 + b_2 &= 5 + 4 &= 9 \ b_4 &= a_4 + b_3 &= 7 + 9 &= 16 \ a_{15} &= a_{14} + 2 &= 29 \end{aligned}$$

$$egin{aligned} \sum_{n=1}^{15} a_n b_n &= 1 imes 1 + 3 imes 4 + 5 imes 9 + \dots 29 imes 225 \ dots \sum_{n=1}^{11} a_n b_n &= \sum_{n=1}^{15} (2n-1) n^2 = \sum_{n=1}^{15} 2n^3 - \sum_{n=1}^{15} n^2 \ &= 2 \Big[rac{15 imes 16}{2} \Big]^2 - \Big[rac{15 imes 16 imes 31}{6} \Big] = 27560. \end{aligned}$$

$$f\left(x
ight) = \left\{ egin{aligned} \left|4x^2 - 8x + 5
ight|, & ext{if } 8x^2 - 6x + 1 \geq 0 \ \left[4x^2 - 8x + 5
ight], & ext{if } 8x^2 - 6x + 1 < 0 \end{aligned}
ight.$$

$$=\left\{egin{array}{ll} 4x^2-8x+5, & ext{if } x\in\left[-\infty,rac{1}{4}
ight]\cup\left[rac{1}{2},\infty
ight) \ \left[4x^2-8x+5
ight] & ext{if } x\in\left(rac{1}{4},rac{1}{2}
ight) \end{array}
ight.$$

$$f\left(x
ight) = \left\{egin{array}{ll} 4x^2 - 8x + 5 & if \, x \in \left(-\infty, rac{1}{4}
ight] \cup \left[rac{1}{2}, \, \infty
ight) \ & x \in \left(rac{1}{4}, rac{2-\sqrt{2}}{2}
ight) \ & x \in \left(rac{2-\sqrt{2}}{2}, rac{1}{2}
ight) \end{array}
ight.$$



$$\therefore \text{ Non - diff at } x = \frac{1}{4}, \frac{2-\sqrt{2}}{2}, \frac{1}{2}$$

Solution 87

$$\lim_{n\to\infty} \left(\frac{n+1}{n}\right)^{k-1} \frac{1}{n} \sum_{r=1}^{n} \left(k + \frac{r}{n}\right) = 33 \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{r}{n}\right)^{k}$$

$$\Rightarrow \int_{0}^{1} (k+x) dx = 33 \int_{0}^{1} x^{k} dx$$

$$\Rightarrow \frac{2k+1}{2} = \frac{33}{k+1}$$

$$\Rightarrow k = 5$$

$$x^2 + y^2 - 2x + 2fy + 1 = 0$$
 [entre = (1, -f]]
Diameter $2px - y = 1$...(i)
 $2x + py = 4p$...(ii)
 $x = \frac{5P}{2P^2 + 2}$ $y = \frac{4P^2 - 1}{1 + P^2}$
 $\therefore x = 1$ $f = 0$ [for $P = \frac{1}{2}$]
 $\frac{5P}{2P^2 + 2} = 1$ $f = 3$ [for $P = 2$]

$$\therefore P=\frac{1}{2},\ 2$$
 Centre can be $\left(\frac{1}{2},\ 0\right)$ or (1, 3) $\left(\frac{1}{2},\ 0\right)$ will not satisfy

 \therefore Tangent should pass through (2, 3) for $3x^2-y^2=3$

$$\frac{x^2}{1} - \frac{y^2}{3} = 1$$

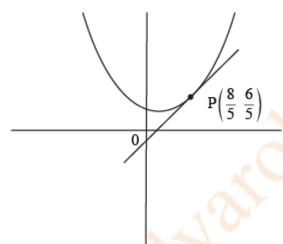
$$y=mx~\pm~\sqrt{m^2-3}$$

substitute (2, 3)

$$3=m\pm\sqrt{m^2-3}$$

$$\therefore \boxed{m=2}$$

Solution 89



Equation of tangent to the parabola at $P\left(rac{8}{5}, \; rac{6}{5}
ight)$

$$75x. \, \frac{8}{5} = 160 \left(y + \frac{6}{5} \right) - 192$$

$$\Rightarrow 120x = 160y$$

$$\Rightarrow 3x = 4y$$

Equation of circle touching the given parabola at P can be taken as

$$\left(x-rac{8}{5}
ight)^2+\left(y-rac{6}{5}
ight)^2+\lambdaigg(3x-4yigg)=0$$

If this circle touches y-axis then

$$rac{64}{25}+\left(y-rac{6}{5}
ight)^2+\lambda\left(-4y
ight)=0$$

$$egin{aligned} &\Rightarrow y^2 - 2y\left(2\lambda + rac{6}{5}
ight) + 4 = 0 \ &\Rightarrow D = 0 \ &\Rightarrow \left(2\lambda + rac{6}{6}
ight)^2 = 4 \ &\Rightarrow \lambda = rac{2}{5} \ ext{or} \ -rac{8}{5} \end{aligned}$$

Radius = 1 or 4Sum of diameter = 10

Solution 90

Line of shortest distance will be along $\overrightarrow{b_1} imes \overrightarrow{b_2}$ Where, $\overrightarrow{b_1} = \hat{j} + \hat{k}$ and $\overrightarrow{b}_2 = 2\hat{i} + 2\hat{j} + \hat{k}$ $\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 2 & 2 & 1 \end{vmatrix} = -\hat{i} + 2\hat{j} - 2\hat{k}$ Angle between $\overrightarrow{b_1} \times \overrightarrow{b_2}$ and plane P,

$$\sin\theta = \left| \frac{-a-2+2}{3.\sqrt{a^2+2}} \right| = \frac{5}{\sqrt{27}}$$

$$\Rightarrow \frac{|a|}{\sqrt{a^2+2}} = \frac{5}{\sqrt{3}}$$

$$\Rightarrow a^2 = -\frac{25}{11} \Big(\text{not possible} \Big)$$

Disclaimer: No answer is correct.