

Atoms

Q.No.1:

In a hydrogen like atom election makes transition from an energy level with quantum number n to another with quantum number (n - 1). If n >> 1, the frequency of radiation emitted is proportional to:

JEE 2013

Q.No.2: Each of hydrogen $(_1H^1)$, deuterium $(_1H^2)$, singly-ionised helium $(_2He^4)^+$ and doubly-ionised lithium $(_3Li^6)^{++}$ have one electron around the nucleus. Consider an electron transition from n = 2 to n = 1. If the wavelengths of emitted radiations are $\underline{\lambda}_1$, $\underline{\lambda}_2$, $\underline{\lambda}_3$ and $\underline{\lambda}_4$, respectively, then approximately which one of the following is correct?

A. $\lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$ **B.** $\lambda_1 = 2\lambda_2 = 3\lambda_3 = 4\lambda_4$ **C.** $4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$ **D.** $\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$

Q.No.3: The radiation corresponding to $3 \rightarrow 2$ transition of hydrogen atom falls on a metal surface to produce photoelectrons. These electrons are made to enter a magnetic field of 3×10^{-4} T. If the radius of the largest circular path followed by these electrons is 10.0 mm, the work function of the metal is close to **A.** 0.8 eV **B.** 1.6 eV **C.** 1.8 eV **D.** 1.1 eV

Q.No.4: If the series limit frequency of the Lyman series is v_L , then the series limit frequency of the P fund series is : **JEE 2018**

- **A.** v_L / 16
- **B.** v_L / 25
- **C.** 25 v_L
- **D.** 16 v_L

Q.No.5: An electron from various excited states of hydrogen atom emit radiation to come to the ground state. Let λ_n , λ_g be the de Broglie wavelength of the electron in the nth state and the ground state respectively. Let \wedge_n be the wavelength of the emitted photon in the transition from the nth state to the ground state. For large n, (A, B are constants)

$$\begin{array}{l} \textbf{A.} \quad \wedge_n^2 \approx \textbf{A} + \textbf{B} \lambda_n^2 \\ \textbf{B.} \quad \wedge_n^2 \approx \lambda \\ \textbf{C.} \quad \wedge_n \approx \textbf{A} + \frac{\textbf{B}}{\lambda^2} \end{array}$$

$$\textbf{D.}\wedge_n\approx A+B\lambda_n$$

Q.No.6: A hydrogen atom, initially in the ground state is excited by absorbing a photon of wavelength 980Å. The radius of the atom in the excited state, in terms of Bohr radius a_0 , will be:

JEE 2019

A. 25*a*₀

(hc = 12500 eV-Å)

- **B.** 9*a*₀
- **C.** 16*a*₀
- **D.** 4*a*₀

Q.No.7: In a hydrogen like atom, when an electron jumps from the M - shell to the L - shell, the wavelength of emitted radiation is λ . If an electron jumps from N-shell to the L-shell, the wavelength of emitted radiation will be: **JEE 2019**

A. $\frac{27}{20} \lambda$ **B.** $\frac{16}{25} \lambda$ **C.** $\frac{25}{16} \lambda$ **D.** $\frac{20}{27} \lambda$

Q.No.8: A particle of mass *m* moves in a circular orbit in a central potential field $U(r) = \frac{1}{2}kr^2$. If Bohr's quantization conditions are applied, radii of possible orbitals and energy levels vary with quantum number *n* as: **JEE 2019**

A. $r_n \propto \sqrt{n}, E_n \propto n$ B. $r_n \propto \sqrt{n}, E_n \propto \frac{1}{n}$ C. $r_n \propto n, E_n \propto n$ D. $r_n \propto n^2, E_n \propto \frac{1}{n^2}$ **Q.No.9:** In the given figure, the energy levels of hydrogen atom have been shown along with some transitions marked A, B, C, D and E. The transitions A, B and C respectively represent :

- **A.** The ionization potential of hydrogen, second member of Balmer series and third member of Paschen series.
- **B.** The series limit of Lyman series, third member of Balmer series and second member of Paschen series.
- **C.** The series limit of Lyman series, second member of Balmer series and second member of Paschen series
- **D.** The first member of the Lyman series, third member of Balmer series and second member of Paschen series.

Q.No.10: If λ_1 and λ_2 are the wavelengths of the third member of Lyman and first member of the Paschen series respectively, then the value of $\lambda_1 : \lambda_2$ is

JEE 2021

JEE 2021

A. 1 : 3 **B.** 7 : 108 **C.** 7 : 135 **D.** 1 : 9