

Application of Integrals

Q.No.1:

The area (in square units) bounded by the curves $y=\sqrt{x}, 2y-x+3=0, x$ -axis, and lying in the first quadrant is :

JEE 2013

- **A.** 9
- **B.** 36
- **C.** 18
- **D.** <u>27</u>
- 4

Q.No.2:

The intercepts on *x*-axis made by tangents to the curve, $y = \int_{0}^{\infty} |t| dt, x \in \mathbb{R}$, which are parallel to the line y = 2x, are equal to:

A. ± 1 **B.** ± 2 **C.** ± 3 **D.** ± 4

JEE 2013

Q.No.3: The area (in sq. units) of the region described by $\{(x, y) : y^2 \le 2x \text{ and } y \ge 4x - 1\}$ is : **JEE 2015**

A. $\frac{7}{32}$ **B.** $\frac{5}{64}$ **C.** $\frac{15}{64}$ **D.** $\frac{9}{32}$

Q.No.4: The area (in sq. units) of the region

$$\{(x, y) : y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$$
 is : JEE 2016
A. $\pi - \frac{8}{3}$
B. $\pi - \frac{4\sqrt{2}}{3}$
C. $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$
D. $\pi - \frac{4}{3}$

Q.No.5: The area (in sq. units) of the region $\{(x, y) : x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x} \}$ is : **JEE 2017**

A. $\frac{59}{12}$ **B.** $\frac{3}{2}$ **C.** $\frac{7}{3}$ **D.** $\frac{5}{2}$

Q.No.6: Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$, and α , β ($\alpha < \beta$) be the roots of the quadratic equation $18x^2 - 9\pi x + \pi^2 = 0$. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines $x = \alpha$, $x = \beta$ and y = 0, is : **JEE 2018**

A.
$$\frac{1}{2} \left(\sqrt{3} - \sqrt{2} \right)$$

B. $\frac{1}{2} \left(\sqrt{2} - 1 \right)$
C. $\frac{1}{2} \left(\sqrt{3} - 1 \right)$
D. $\frac{1}{2} \left(\sqrt{3} + 1 \right)$

Q.No.7: The area (in sq. units) bounded by the parabola $y = x^2 - 1$, the tangent at the point (2, 3) to it and the *y*-axis is: **JEE 2019**

A. $\frac{8}{3}$ **B.** $\frac{32}{3}$ **C.** $\frac{56}{3}$ **Q.No.8:** The area of the region A = {(x, y): $0 \le y \le x |x| + 1$ and $-1 \le x \le 1$ } in sq. units, is: **JEE 2019**

- **A.** $\frac{2}{3}$
- **B.** 2
- $\frac{4}{3}$ С.
- **D.** $\frac{1}{3}$

Q.No.9: If the area enclosed between the curves $y = kx^2$ and $x = ky^2$, (k > 0), is 1 square unit. Then k is: **JEE 2019**

A. $\frac{\sqrt{3}}{2}$ **B.** $\frac{1}{\sqrt{3}}$ C. $\sqrt{3}$ **D.** $\frac{2}{\sqrt{3}}$

Q.No.10: The area (in sq. units) in the first quadrant bounded by the parabola, $y = x^2 + 1$, the tangent to it at the point (2, 5) and the coordinate axes is:

JEE 2019

