

JEE Main 25 July 2022(Second Shift)

Total Time: 180

Total Marks: 300.0

Solution 1

$$A_{
m max}=6~{
m V}$$

$$A_{
m min}=2~{
m V}$$

$$\mu = rac{A_{
m max} - A_{
m min}}{A_{
m min} + A_{
m min}} = rac{6-2}{6+2} = 0.5$$

$$\mu = 50\%$$

Hence, the correct answer is option D.

Solution 2

$$B = \frac{n\mu_0 l}{2R}$$

$$B_1=rac{2\mu_0 l}{2R_1}$$

$$B_2=rac{5\mu_0 l}{2R_2}$$

$$R_2 = \frac{2R_1}{5}$$

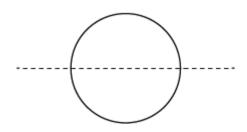
$$\Rightarrow \frac{B_2}{B_1} = \frac{5}{2} \times \frac{R_1}{R_2} = \frac{25}{4}$$

Hence, the correct answer is option B.

Solution 3

Balancing the forces on drop

$$2\pi RT + rac{4}{3}\pi R^3
ho g = rac{2}{3}\pi R^3\sigma g$$



$$egin{aligned} \Rightarrow 2T &= rac{2R^2}{3} \left(\sigma - 2
ho
ight) imes 10 \ &\Rightarrow rac{15 imes 10^{-2} imes 3}{10 \left(\sigma - 2
ho
ight) 2} R^2 \end{aligned}$$

$$egin{aligned} R = & rac{3}{2 imes 10} \sqrt{rac{1}{(\sigma - 2
ho)}} \ = & rac{3}{20} \sqrt{rac{1}{\sigma - 2
ho}} \ ext{(in m)} \end{aligned}$$

$$(R) ext{ in } ext{cm} = rac{3 imes 100}{20} \sqrt{rac{1}{\sigma-2\,
ho}} = 15 imes rac{1}{\sqrt{\sigma-2
ho}}$$
 Now if $2
ho > \sigma\left(R_{ ext{in cm}}
ight) = rac{15}{\sqrt{2
ho-\sigma}}$

Solution 4

Change in momentum of one ball

$$= 2 \times (0.05)(10) \text{ kg m/s}$$

$$= 1 kg m/s$$

$$\Rightarrow F_{\mathrm{avg}} = \frac{1}{\Delta t} = \frac{1}{0.005} \mathrm{N}$$

$$=200 N$$

Hence, the correct answer is option B.

Solution 5

Resultant of already applied forces = $-\hat{i}-\hat{j}$

- \Rightarrow Force required to balance = $\hat{i}+\hat{j}$
- \Rightarrow Force required = $\sqrt{2}$ N in magnitude at angle 45° with +ve x-axis

Hence, the correct answer is option A.

Initially =
$$C_0 = 4\pi \varepsilon_0 R_1$$

finally
$$rac{4\piarepsilon_0 R_1 R_2}{R_2-R_1}=nC_0=4\piarepsilon_0 nR_1$$
 $rac{R_2}{R_2-R_1}=n$ $1-rac{R_1}{R_2}=rac{1}{n}$ $rac{R_1}{R_2}=rac{n-1}{n}$ $rac{R_2}{R_1}=rac{n}{n-1}$

Solution 7

$$\lambda = rac{h}{mv} = rac{h}{\sqrt{2meV}}$$
 $\operatorname{So}rac{\lambda_p}{\lambda_d} = rac{\sqrt{m_dV_d}}{\sqrt{m_pV_p}} = rac{1}{\sqrt{2}}$
 $rac{2V_d}{V_p} = rac{1}{2}$
 $rac{V_p}{V_d} = rac{4}{1}$

Hence, the correct answer is option D.

Solution 8

The shift produced by the glass plate is

$$d=t\left(1-rac{1}{\mu}
ight)=1 imes\left(1-rac{1}{1.5}
ight)=rac{1}{3}$$
 cm

So final image must be produced at $\left(12-\frac{1}{3}\right)$ cm $=\frac{35}{3}$ cm from lens so that glass plate must shift it to produce image at screen. So $\frac{1}{12}-\frac{1}{-240}=\frac{1}{f}=\frac{1}{35/3}-\frac{1}{u}$

$$\frac{1}{12} - \frac{1}{-240} = \frac{1}{f} = \frac{35/3}{35/3} - \frac{1}{u}$$

$$\frac{1}{u} = \frac{3}{35} - \frac{1}{12} - \frac{1}{240}$$

or
$$u = -560$$
 cm

so shift =
$$5.6 - 2.4 = 3.2 \text{ m}$$

Hence, the correct answer is option B.

$$c = 3 \times 10^8 \text{ m/sec}$$

$$B = \frac{E}{c} = \frac{540}{3 \times 10^8} = 18 \times 10^{-7} \text{ T}$$

Solution 10

Metal detector works on the principle of resonance in ac circuits.

Hence, the correct answer is option B.

Solution 11

$$egin{aligned} T &= rac{2\pi m}{Bq} \ \Rightarrow & ext{Frequency } f = rac{Bq}{2\pi m} \ &= rac{10^{-4} imes 1.6 imes 10^{-19}}{2\pi imes 9 imes 10^{-31}} \ &\simeq & 2.8 imes 10^6 ext{ Hz} \end{aligned}$$

Hence, the correct answer is option C.

Solution 12

Effective
$$R = \left[5 + \frac{5 \times 10}{5 + 10} + 10\right] \text{ k}\Omega$$

$$= \frac{275}{15} \text{ k}\Omega$$

$$\Rightarrow$$
 $\Delta V_{AB} = 15 \mathrm{~mA} imes rac{275}{15} \mathrm{k}\Omega$
= $275 \mathrm{~V}$

Hence, the correct answer is option D.

Solution 13

$$egin{align} g &= rac{GM}{(R+h)^2} = rac{GM}{9R^2} = rac{g_0}{9} \ &\Rightarrow T &= 2\pi\sqrt{rac{1}{g}} = 2\pi\sqrt{rac{1}{rac{g_0}{9}}} \ &\Rightarrow 2 &= 2\pi\sqrt{rac{91}{g_0}} \ &\Rightarrow 1 &= rac{g_0}{9\pi^2} = rac{1}{9} \ \mathrm{m} \ \end{array}$$

Hence, the correct answer is option D.

Molar mass
$$M = \frac{2 \times 4 + n \times 1}{2 + n} \dots (i)$$

Also,
$$\gamma=rac{n_1C_{P_1}+n_2C_{P_2}}{n_1C_{V_1}+n_2C_{V_2}}=rac{2 imes 5R+n imes 7R}{2 imes 3R+n imes 5R}$$

$$\Rightarrow \gamma = rac{10+7n}{6+5n} \quad \ldots \quad ext{(ii)}$$

Given that $V_{
m rms} = \sqrt{2} \; V_{
m sound}$

$$\Rightarrow \sqrt{rac{3RT}{M}} = \sqrt{2}\sqrt{rac{\gamma RT}{M}}$$

$$\Rightarrow \gamma = \frac{3}{2}$$

$$\Rightarrow n=2$$

Hence, the correct answer is option B.

Solution 15

$$\eta_1 = 1 - \frac{420}{720} = \frac{300}{720}$$

And
$$\eta_2 = 1 - \frac{320}{1220} = \frac{900}{1220}$$

$$\Rightarrow \frac{\eta_1}{\eta_2} = \frac{300}{720} \times \frac{1220}{900}$$

$$\simeq 0.56$$

Hence, the correct answer is option B.

Solution 16

$$w = mg$$

$$w'=rac{mg}{\left(1+rac{h}{R}
ight)^2}=rac{mg}{\left(rac{5}{4}
ight)^2}=rac{16}{25}mg$$

∴ % decrease in weight

$$=\left(1-rac{16}{25}
ight) imes 100\% \ = 36\%$$

Hence, the correct answer is option A.

Loss in
$$KE = \frac{1}{2} \times \frac{m_1 m_2}{m_1 + m_2} \times v^2$$

= $\frac{1}{2} \times \frac{9.8 \times 0.2}{10} \times (10)^2$
= 9.8 J

Solution 18

$$\because \tan \theta = \frac{4H}{R}$$

$$\Rightarrow \tan\theta = 4 \times 1$$

$$\Rightarrow \tan\!\theta = 4$$

Hence, the correct answer is option D.

Solution 19

$$H = i^2 Rt$$

∴ % error in
$$H=2 \times 2\% + 1\% + 3\%$$

=8%

Hence, the correct answer is option D.

Solution 20

$$\therefore \frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$$

$$\Rightarrow \frac{1}{\lambda R} = 1 - \frac{1}{n^2}$$

$$\Rightarrow \frac{1}{n^2} = 1 - \frac{1}{\lambda R} = \frac{\lambda R - 1}{\lambda R}$$

$$\Rightarrow n = \sqrt{rac{\lambda R}{\lambda R - 1}}$$

Hence, the correct answer is option B.

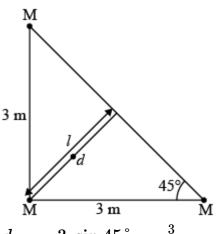
Solution 21

$$\frac{dv}{dx} = 5 \text{ ms}^{-1}/\text{m}$$

Acceleration of particle

when v = 20 m/s

$$a = v \frac{dv}{dx} = 20 (5) \text{ m/s}^2 = 100 \text{ m/s}^2$$



$$d_{
m cm}=3\,\sin 45\,^\circ=rac{3}{\sqrt{2}}$$

$$d_{
m cm}=rac{2}{3} imesrac{3}{\sqrt{2}}=\sqrt{2}=\sqrt{x}$$

$$x = 2$$

Heat lost by water = Heat gained by ice $0.3 \times 4200 \times 25 = x \times 3.5 \times 10^5$

$$x = rac{0.3 imes 4200 imes 25}{3.5 imes 10^5}$$

$$=90\times100\times10^5\times10^3~\mathrm{gram}=90~\mathrm{gm}$$

Solution 24

$$E_n = -rac{13.6}{n^2} \mathrm{eV}$$

$$\frac{\frac{1}{2^2} - \frac{1}{3^2}}{\frac{1}{2^2}} = \frac{x}{x+4}$$

$$\Rightarrow \frac{9-4}{9\times 4\times \frac{1}{4}} = \frac{x}{x+4} = \frac{5}{9}$$

$$x = 5$$

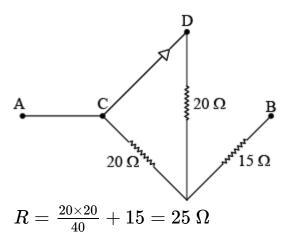
Solution 25

$$E \propto l$$

$$\frac{1.2}{1.8} = \frac{36}{l}$$

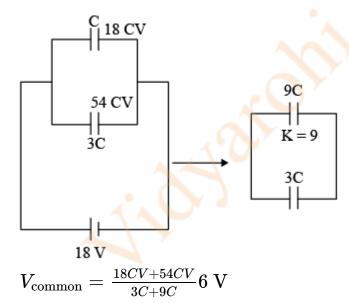
$$l'=rac{3}{2} imes 36=54~ ext{cm}$$

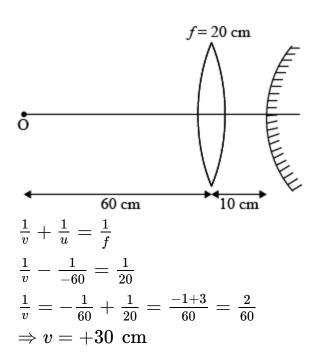
$$\Delta l = l' - l = 54 - 36 = 18$$
 cm



$$egin{align} A_{
m net} &= \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\phi} \ \sqrt{3}A &= \sqrt{A^2 + A^2 + 2A^2\cos\phi} \ 3A^2 &= 2A^2 + 2A^2\cos\phi \ \cos\phi &= rac{1}{2} \ \phi &= 60\,^\circ \ \end{array}$$

Solution 28





 \therefore Radius of curvature of mirror = 30 - 10 = 20 cm $\Rightarrow f_{
m mirror} = rac{20}{2} = 10 \, {
m cm}$

Solution 30

$$egin{aligned} R &= 20 \; \Omega \ \phi &= 8t^2 - 9t + 5 \ arepsilon &= \left| -rac{d\phi}{dt}
ight| = |16t - 9| = |16 \, (0.\, 25) - 9| = 5 \ i &= rac{arepsilon}{R} = rac{5}{20} = 0.\, 25 \; \mathrm{A} = rac{0.25}{10^3} imes 10^3 \; \mathrm{A} = 250 \; \mathrm{mA} \end{aligned}$$

Solution 31

 $XeO_3 - sp^3$, Pyramidal $XeF_2 - sp^3d$, linear $XeOF_4 - sp^3d^2$, Square Pyramidal $XeF_6 - sp^3d^3$, distorted octahedral

Hence, the correct answer is option A.

$$\Delta T_f = \mathrm{i} \ \mathrm{K_f} imes \mathrm{m}$$

$$\frac{\Delta T_{f(A)}}{\Delta T_{f(B)}} = \frac{1}{4}$$

$$\frac{i\times K_f\times \frac{1}{M_A}\times 1}{i\times K_f\times \frac{1}{M_B}\times 1}=\frac{1}{4}$$

$$\frac{M_B}{M_A} = \frac{1}{4}$$

$$M_A \,:\, M_B = 4 \,:\, 1 = 1 \,:\, 0.\,25$$

Solution 33

$${
m H_2C_2O_4} \
ightleftharpoons \ 2{
m H}^+ + {
m C_2O_4^{2-}} \ {
m K_{a_3}}$$

$$H_2C_2O_4 \rightleftharpoons H^+ + HC_2O_4^- \quad K_{a_1}$$

$$HC_2\,O_4^- \, \rightleftharpoons \, H^+ + C_2O_4^{2-} \qquad K_{a_2}$$

$${
m K}_{{
m a}_3}=rac{{
m [H^+]}^2{
m [C_2O_4^{2-}]}}{{
m [H_2C_2O_4]}}$$

$$\mathrm{K_{a_1}} = rac{[\mathrm{H^+}][\mathrm{HC_2\,O_4^-}]}{[\mathrm{H_2C_2O_4}]}, \; \mathrm{K_{a_2}} = rac{[\mathrm{H^+}][\mathrm{C_2O_4^-}]}{[\mathrm{HC_2\,O_4^-}]}$$

$$K_{a_3}=K_{a_1}\times K_{a_2}$$

Hence, the correct answer is option D.

Solution 34

$$\Lambda_{\mathrm{m}_1} = rac{\kappa_1 imes 1000}{\mathrm{M}_1} = rac{\kappa_1 imes 1000}{rac{10}{0.00}}$$

$$\Lambda_{ ext{m}_2} = rac{\kappa_2 imes 1000}{rac{20}{0.08}}$$

It is given that $\kappa_1 = \kappa_2$

$$\kappa_1 = rac{\Lambda_{
m m_1}}{2} \hspace{1cm} \kappa_2 = rac{\Lambda_{
m m_2}}{4}$$

Applying the given condition on conductivity.

$$rac{\Lambda_{m_1}}{2}=rac{\Lambda_{m_2}}{4}$$

$$\Lambda_{
m m_2}=2\Lambda_{
m m_1}$$

Solution 35

Micelle formation is an endothermic process with positive entropy change.

Hence, the correct answer is option C.

Solution 36

The first ionisation energy increase from left to right along 2nd period with the following exceptions

 $IE_1 : Be > B \text{ and } N > O$

This is due to stable configuration of Be in comparison to B and that of N in comparison to O. Hence the correct order is N > O > Be > B

Hence, the correct answer is option D.

Solution 37

Cast iron is made by melting pig iron with scrap iron and coke using hot air blast.

Hence Statement-I is incorrect

But Pig iron has relatively more carbon content

Hence statement-II is incorrect.

Hence, the correct answer is option B.

Solution 38

High purity (>99.95%) H₂ is obtained by electrolysing warm aqueous Ba(OH)₂ solution between nickel electrodes.

Hence, the correct answer is option C.

Solution 39

Density of $Sr = 2.63 \text{ g/cm}^3$

Density of Be = 1.84 g/cm^3

Density of Mg = 1.74 g/cm^3

Density of Ca = 1.55 g/cm^3

Hence, the correct answer is option C.

Solution 40

NO, N_2O , CO – neutral oxides B_2O_3 , N_2O_5 , SO_3 , P_4O_{10} – acidic oxides

Solution 41

Stronger is ligand attached to metal ion, greater will be the splitting between t_2g and eg (hence greater will be ΔU), \therefore greater will be absorption of energy. Hence correct order

$$[Ni(en)_3]^{2+} > [Ni(NH_3)_6]^{2+} > [Ni(H_2O)_6]^{2+}$$

Hence, the correct answer is option A.

Solution 42

Sodium arsinite — Herbicide Nicotine — Pesticide Sulphate — Laxative effect Fluoride — Bending of bones

Hence, the correct answer is option C.

Solution 43

Hence, the correct answer is option D.

Solution 45

Hence, the correct answer is option A.

Solution 46

$$CH_{3}-CH_{2}-C = N \xrightarrow{\delta^{-} \atop CH_{3}MgBr} CH_{3}-CH_{2}-C \xrightarrow{N} Mg Br$$

$$\downarrow H_{3}O^{+}$$

$$CH_{3}-CH_{2}-C - CH_{3}$$

$$B$$

$$\downarrow Zn-Hg$$

$$HC1$$

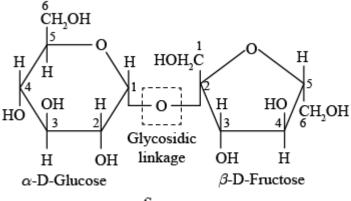
$$CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

Hence, the correct answer is option A.

Nylon 6, 6 \rightarrow used in making bristles of brushes Low density polythene \rightarrow used in making Toys High density polythene \rightarrow used in making Buckets Teflon \rightarrow used in making non-stick utensils

Hence, the correct answer is option B.

Solution 48



Sucrose

Hence in sucrose glycosidic linkage between C_1 of α -glucose and C_2 of β -D-fructose is found

Maltose \Rightarrow Glycosidic linkage between C₁ and C₄

Lactose \Rightarrow Glycosidic linkage between C₁ and C₄

Amylose \Rightarrow Glycosidic linkage between C₁ and C₄

Hence, the correct answer is option B.

Solution 49

Some drugs do not bind to the enzyme's active site. These bind to a different site of enzyme which is called allosteric site.

Hence, the correct answer is option B.

Solution 50

$$-O_3S$$
 $-N=N-N=N-N$ CH_3 CH_3

(quinonoid form)

Hence at the end point methyl orange is present as quinonoid form.

Hence, the correct answer is option A.

 $\text{N}_2(\text{g}) + 3\text{H}_2\ (\text{g}) \rightarrow 2\text{NH}_3\ (\text{g})$ Since H_2 is in excess and 20 L of ammonia gas is produced. Hence, 2 moles $\text{NH}_3 \equiv 1$ mole $\text{N}_2 \quad (\text{v} \propto \text{n})$ 20 L $\text{NH}_3 \equiv 10$ L N_2 $\text{Volume of } N_2 \text{ left} = 56 - 10 = 46 \text{ L}$

Solution 52

From ideal gas equation, PV = nRT $P = 2 \times 10^6 \text{ Pa}$ $V = 2 \text{ dm}^3 = 2 \times 10^{-3} \text{ m}^3$ $R = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}$ $n = \frac{11}{44} \text{ mol}$ $2 \times 10^6 \times 2 \times 10^{-3} = \frac{11}{44} \times 8.3 \times T$ T = 1927.7 K $T \text{ (in °C)} = 1927.7 - 273 \simeq 1655 \text{ °C}$

Solution 53

Since there is a single hydrogen atom, so only $5 \rightarrow 4$, $4 \rightarrow 3$, $3 \rightarrow 2$, $2 \rightarrow 1$ lines are obtained.

Solution 54

(I) HCl + NaOH
$$\rightarrow$$
 NaCl + H₂O
$$\Delta H_1 = -57.3 \text{ KJ mol}^{-1}$$
 (II) CH₃COOH + NaOH \rightarrow CH₃COONa + H₂O
$$\Delta H_2 = -55.3 \text{ KJ mol}^{-1}$$
 Reaction (I) can be written as (III) NaCl + H₂O \rightarrow HCl + NaOH
$$\Delta H_3 = 57.3 \text{ KJ mol}^{-1}$$
 By adding (II) and (III) CH₃COOH + NaCl \rightarrow CH₃COONa + HCl ΔH_r
$$\Delta H_r = \Delta H_3 + \Delta H_2 = 57.3 - 55.3 = 2 \text{ kJ mol}^{-1}$$

For first order reaction,

$$\ln A = \ln A_0 - kt$$

Hence Slope = $-k$
 $-k = -3.465 \times 10^4$

$$k=rac{0.693}{t_{rac{1}{2}}}$$

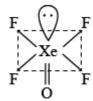
$$3.465 imes 10^4 = rac{0.693}{t_{rac{1}{2}}}$$

$$t_{rac{1}{2}}=2 imes10^{-5}~\mathrm{s}$$

 $XeO_3 \Rightarrow S.N.$ (Steric number) = $\frac{1}{2} [8] = 4 \Rightarrow sp^3$

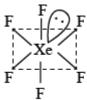
Lone pair on central atom = 1

 $XeOF_4 \Rightarrow S.N = \frac{1}{2}[8 + 4] = 6 \Rightarrow sp^3d^2$



Lone pair on central atom = 1

$$XeF_{6\Rightarrow}S.N = \frac{1}{2} [8 + 6] = 7 \Rightarrow sp^3d^3$$



Lone pair on central atom = 1

Sum of lone pairs = 3

Solution 57

Among the pairs given, Cr^{3+}/Cr^{2+} has negative reduction potential which is -0.41~V.

Cr (III) $\Rightarrow d^3$

Number of unpaired electrons = 3

$$\mu = \sqrt{3(3+2)} = \sqrt{15} \simeq 4 \text{ B. M.}$$

Solution 58

R - OH + CH₃ MgI \Rightarrow R - OMgI + CH₄ moles of alcohol (ROH) \equiv moles of CH₄ At STP, [Assuming STP]

1 mole corresponds to 22.7 L

Hence, 3.1 mL $\equiv \frac{3.1}{22700}$ mol

So, moles of alcohol = $\frac{3.1}{22700}$

$$\Rightarrow \frac{3.1}{22700} = \frac{4.5 \times 10^{-3}}{M}$$

$$M \simeq 33 \text{ g/mol}$$

$$\begin{split} R_f &= \frac{\text{Distance travelled by the substance}}{\text{Distance travelled by the solvent front}} \\ \left(R_f\right)_A &= \frac{2.08}{3.25} \\ \left(R_f\right)_B &= \frac{1.05}{3.25} \\ \frac{\left(R_f\right)_A}{\left(R_f\right)_B} &\simeq 2 \end{split}$$

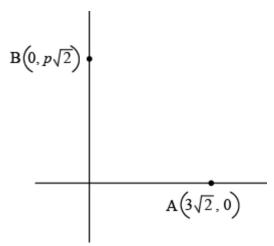
Solution 60

Total monobromo derivatives = 8

$$\begin{array}{c} CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-Br, \\ CH_{3}-CH_{2}-CH_{2}-CH-CH_{3}, \\ Br \\ CH_{3}-CH_{2}-CH-CH_{2}-CH_{3}, \\ Br \\ CH_{3}-CH_{2}-CH-CH_{2}-Br, \\ CH_{3} \\ \end{array}$$

$$\begin{array}{c} Br \\ CH_{3}-CH_{2}-CH-CH_{2}-Br, \\ CH_{3} \\ \end{array}$$

$$\begin{array}{c} CH_{3} \\ CH_{3} \\ \end{array}$$



It is sum of distance of z from $\left(3\sqrt{2},\ 0\right)$ and $\left(0,\ p\sqrt{2}\right)$

For minimising, z should lie on AB and AB = $5\sqrt{2}$

$$\left(AB\right)^2=18+2p^2 \ p=\pm 4$$

Hence, the correct answer is option C.

Solution 62

$$egin{aligned} \Delta &= egin{array}{c|ccc} 2 & -3 & 5 \ 1 & 3 & -1 \ 3 & -1 & \lambda^2 - |\lambda| \ \end{pmatrix} = 2\left(3\lambda^2 - 3\left|\lambda\right| - 1
ight) + 3\left(\lambda^2 - |\lambda| + 3
ight) + 5\left(-1 - 9
ight) \ &= 9\lambda^2 - 9\left|\lambda\right| - 43 \ &= 9|\lambda|^2 - 9\left|\lambda\right| - 43 \end{aligned}$$

 $\Delta=0$ for 2 values of $|\lambda|$ out of which one is –ve and other is +ve So, 2 values of λ satisfy the system of equations to obtain no solution

Hence, the correct answer is option C.

Solution 63

As function is one-one and onto, out of 50 elements of domain set 17 elements are following restriction

So number of ways=
$$^{50}C_{17} \cdot 1 \cdot 33!$$
 = $^{50}P_{33}$

Solution 64

$$\operatorname{Re}\left(\frac{(11)^{1011} + (1011)^{11}}{9}\right) = \operatorname{Re}\left(\frac{2^{1011} + 3^{11}}{9}\right)$$
For $\operatorname{Re}\left(\frac{2^{1011}}{9}\right)$

$$\begin{split} 2^{1011} &= (9-1)^{337} = {}^{337}C_0 9^{337} (-1)^0 \\ &+ {}^{337}C_1 9^{336} (-1)^1 \\ &+ {}^{337}C_2 9^{335} (-1)^2 + \ldots \\ &+ {}^{337}C_{337} 9^0 (-1)^{337} \end{split}$$

so, remainder is 8 and $\operatorname{Re}\left(\frac{3^{11}}{9}\right)=0$ So, remainder is 8

Hence, the correct answer is option D.

Solution 65

$$\sum_{n=1}^{21} \frac{3}{(4n-1)(4n+3)} = \frac{3}{4} \sum_{n=1}^{21} \frac{1}{4n-1} - \frac{1}{4n+3}$$

$$= \frac{3}{4} \left[\left(\frac{1}{3} - \frac{1}{7} \right) + \left(\frac{1}{7} - \frac{1}{11} \right) + \dots + \left(\frac{1}{83} - \frac{1}{87} \right) \right]$$

$$= \frac{3}{4} \left[\frac{1}{3} - \frac{1}{87} \right]$$

$$= \frac{3}{4} \times \frac{84}{3 \times 87}$$

$$= \frac{7}{29}$$

Hence, the correct answer is option B.

$$\lim_{x \to \frac{\pi}{4}} \frac{8\sqrt{2} - (\cos x + \sin x)^7}{\sqrt{2} - \sqrt{2} \sin 2x} \qquad \left(\frac{0}{0} \text{ form}\right)$$

$$=\lim_{x\to\frac{\pi}{4}}\frac{-7(\cos\,x+\sin\,x)^6(-\sin\,x+\cos\,x)}{-2\sqrt{2}\,\cos2x} \text{ using L-H Rule}$$

$$=\lim_{x\to\frac{\pi}{4}}\frac{56(\cos\,x-\sin\,x)}{2\sqrt{2}\cos2x} \,\left(\frac{0}{0}\right)$$

$$=\lim_{x\to\frac{\pi}{4}}\frac{-56(\sin\,x+\cos\,x)}{-4\sqrt{2}\sin2x} \quad \text{using L-H Rule}$$

$$=7\sqrt{2}\cdot\sqrt{2}=14$$

Solution 67

$$I = \lim_{n o \infty} rac{1}{2^n} \left(rac{1}{\sqrt{1 - rac{1}{2^n}}} + rac{1}{\sqrt{1 - rac{2}{2^n}}} + rac{1}{\sqrt{1 - rac{3}{2^n}}} + \ldots + rac{1}{\sqrt{1 - rac{2^{n-1}}{2^n}}}
ight)$$

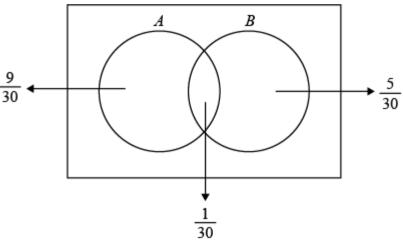
Let $2^n = t$ and if $n \to \infty$ then $t \to \infty$

$$egin{align} l = \lim_{n o \infty} rac{1}{t} \left(\sum_{r=1}^{t-1} rac{1}{\sqrt{1-rac{r}{t}}}
ight) \ l = \int\limits_0^1 rac{dx}{\sqrt{1-x}} = \int\limits_0^1 rac{dx}{\sqrt{x}} \qquad \left(\int\limits_0^a f(x) dx = \int\limits_0^a f(a-x) dx
ight) \ = \left[2x^rac{1}{2}
ight]_0^1 \ - 2 \end{array}$$

Hence, the correct answer is option C.

$$P(A) = \frac{1}{3}, \ P(B) = \frac{1}{5} \text{ and } P(A \cup B) = \frac{1}{2}$$

 $\therefore P(A \cap B) = \frac{1}{3} + \frac{1}{5} - \frac{1}{2} = \frac{1}{30}$

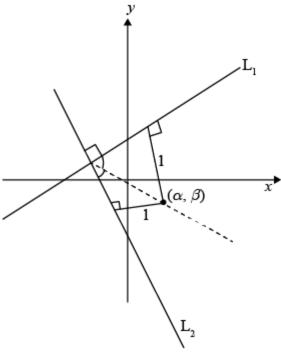


Now,
$$P(A|B') + P(B|A') = \frac{P(A \cap B')}{P(B')} + \frac{P(B \cap A')}{P(A')}$$
$$= \frac{\frac{9}{30}}{\frac{4}{5}} + \frac{\frac{5}{30}}{\frac{2}{3}} = \frac{5}{8}$$

Solution 69

$$\begin{split} &l = \int_{-3}^{101} \left([\sin{(\pi x)}] + e^{[\cos{(2\pi x)}]} \right) dx \\ &[\sin{\pi x}] \text{ is periodic with period 2 and } e^{[\cos{(2\pi x)}]} \text{ s periodic with period 1.} \\ &\text{So,} \\ &l = 52 \int_{0}^{2} \left([\sin{\pi x}] + e^{[\cos{2\pi x}]} \right) dx \\ &= 52 \left\{ \int_{1}^{2} -1 \ dx + \int_{\frac{1}{4}}^{\frac{3}{4}} e^{-1} dx + \int_{\frac{5}{4}}^{\frac{7}{4}} e^{-1} \ dx + \int_{0}^{\frac{1}{4}} e^{0} \ dx + \int_{\frac{3}{4}}^{\frac{5}{4}} e^{0} \ dx + \int_{\frac{7}{4}}^{2} e^{0} \ dx \right\} \\ &= \frac{52}{e} \end{split}$$

Hence, the correct answer is option B.



$$L_1: 3x - 4y + 12 = 0$$

$$L_2: 8x + 6y + 11 = 0$$

Equation of angle bisector of L_1 and L_2 of angle containing origin

$$2(3x - 4y + 12) = 8x + 6y + 11$$

$$2x + 14y - 13 = 0$$
(i)

$$rac{3lpha-4eta+12}{5}=1 \ \Rightarrow 3lpha-4eta+7=0 \qquad \ldots . ag{ii}$$

Solution of 2x + 14y - 13 = 0 and 3x - 4y + 7 = 0

gives the required point $P\left(\alpha,\; eta
ight),\; lpha=rac{-23}{25},\; eta=rac{53}{50}$

$$100 \left(\alpha + \beta \right) = 14$$

Hence, the correct answer is option D.

$$egin{array}{l} rac{dy}{dx} \propto rac{-y}{x} \ & rac{dy}{dx} = rac{-ky}{x} \Rightarrow \int rac{dy}{y} = -K \int rac{dx}{x} \ & \ln|y| = -K \ln|x| + C \end{array}$$

If the above equation satisfy (1, 2) and (8, 1)
$$\ln 2 = -K \times 0 + C \Rightarrow C = \ln 2$$
 $\ln 1 = -K \ln 8 + \ln 2 \Rightarrow K = \frac{1}{3}$ So, at $x = \frac{1}{8}$ $\ln |y| = -\frac{1}{3} \ln \left(\frac{1}{8}\right) + \ln 2 = 2 \ln 2$ $|y| = 4$

Solution 72

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 meets the line $rac{x}{7}+rac{y}{2\sqrt{6}}=1$ on the x-axis

So,
$$a = 7$$

and
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 meets the line $rac{x}{7}-rac{y}{2\sqrt{6}}=1$ on the *y*-axis

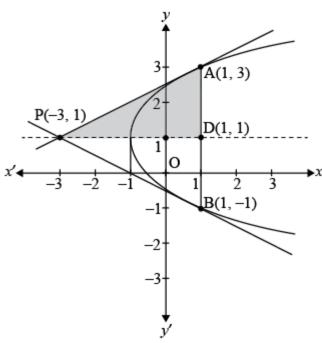
So,
$$b=2\sqrt{6}$$

Therefore,
$$e^2 = 1 - rac{b^2}{a^2} = 1 - rac{24}{49}$$

$$e = \frac{5}{7}$$

Hence, the correct answer is option A.

Given curve :
$$y^2 - 2x - 2y = 1$$
.
Can be written as $(y - 1)^2 = 2(x + 1)$



And, the given information Can be plotted as shown in figure Tangent at A: 2y-x-5=0 {using T=0} Intersection with y=1 is x=-3 Hence, point P is (-3,1) Taking advantage of symmetry Area of $\Delta PAB=2 \times \frac{1}{2} \times (1-(-3)) \times (3-1)$ =8 sq. units

Hence, the correct answer is option D.

Ellipse:
$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

Eccentricity =
$$\sqrt{1 - \frac{7}{16}} = \frac{3}{4}$$

Foci
$$\equiv (\pm a \ e, \ 0) \equiv (\pm 3, \ 0)$$

$$ext{Hyperbola} \ : \ rac{x^2}{\left(rac{144}{25}
ight)} - rac{y^2}{\left(rac{lpha}{25}
ight)} = 1$$

Eccentricity =
$$\sqrt{1 + \frac{\alpha}{144}} = \frac{1}{12}\sqrt{144 + \alpha}$$

$$\mathrm{Foc} \equiv (\pm ae,\ 0) \equiv \left(\pm rac{12}{5} \cdot rac{1}{12} \sqrt{144 + lpha},\ 0
ight)$$

If foci coincide then
$$3 = \frac{1}{5}\sqrt{144 + \alpha} \Rightarrow \alpha = 81$$

Hence, hyperbola is
$$\frac{x^2}{\left(\frac{12}{5}\right)^2} - \frac{y^2}{\left(\frac{9}{5}\right)^2} = 1$$

Length of latus rectum
$$= 2 \cdot \frac{\frac{81}{25}}{\frac{12}{5}} = \frac{27}{10}$$

Solution 75

First plane, $P_1 = 2x - 2y + z = 0$, normal vector $\equiv \bar{n}_1 = (2, -2, 1)$

Second plane, $P_2 \equiv x-y+2z=4$, normal vector $\equiv ar{n}_2=(1,\ -1,\ 2)$

Plane perpendicular to P_1 and P_2 will have normal vector \bar{n}_3

Where
$$ar{n}_3=(ar{n}_1 imesar{n}_2)$$

Hence,
$$\bar{n}_3 = (-3, -3, 0)$$

Equation of plane E through P(1, -1, 1) and \bar{n}_3 as normal vector

$$(x-1, y+1, z-1) \cdot (-3, -3, 0) = 0$$

 $\Rightarrow x+y=0=E$

$$\Rightarrow x + y = 0 \equiv E$$

Distance of PQ (a, a, 2) from $E = \left| \frac{2a}{\sqrt{2}} \right|$

as given,
$$\left|rac{2a}{\sqrt{2}}
ight|=3\sqrt{2}\Rightarrow a=\pm 3$$

Hence,
$$Q\equiv (\pm 3,\ \pm 3,\ 2)$$

Distance
$$7Q = \sqrt{21} \Rightarrow (PQ)^2 = 21$$

Hence, the correct answer is option C.

$$L_1: \frac{x+7}{-6} = \frac{y-6}{7} = \frac{z-0}{1}$$

Any point on it $\overrightarrow{a}_1 (-7, 6, 0)$ and L_1 is parallel to $\overrightarrow{b}_1 (-6, 7, 1)$

$$L_2: \frac{x-7}{-2} = \frac{y-2}{1} = \frac{z-6}{1}$$

Any point on it, \overrightarrow{a}_2 (-7, 2, 6) and L_2 is parallel to \overrightarrow{b}_2 (-2, 1, 1) Shortest distance between L_1 and L_2

$$egin{aligned} &=\left|rac{\left(\overrightarrow{a}_{2}-\overrightarrow{a}_{1}
ight)\cdot\left(\overrightarrow{b}_{1} imes\overrightarrow{b}_{2}
ight)}{\left|\overrightarrow{b}_{1} imes\overrightarrow{b}_{2}
ight|}
ight|=\left|rac{\left(-14,4,-6
ight)\cdot\left(3,2,4
ight)}{\sqrt{9+4+16}}
ight|\ &=2\sqrt{29}. \end{aligned}$$

Hence, the correct answer is option A.

$$\overrightarrow{a} = \hat{i} - \hat{j} + 2\hat{k}$$

$$\overrightarrow{a} \times \overrightarrow{b} = 2\hat{i} - \hat{k}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = 3$$

$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \right|^2 \cdot \left| \overrightarrow{b} \right|^2$$

$$\Rightarrow 5 + 9 = 6 \left| \overrightarrow{b} \right|^2$$

$$\Rightarrow |b|^2 = \frac{7}{3}$$

$$\left| \overrightarrow{a} - \overrightarrow{b} \right| = \sqrt{\left| \overrightarrow{a} \right|^2 + \left| \overrightarrow{b} \right|^2 - 2\overrightarrow{a} \cdot \overrightarrow{b}} = \sqrt{\frac{7}{3}}$$

projection of
$$\overrightarrow{b}$$
 on $\overrightarrow{a} - \overrightarrow{b} = \frac{\overrightarrow{b} \cdot \left(\overrightarrow{a} - \overrightarrow{b}\right)}{\left|\overrightarrow{a} - \overrightarrow{b}\right|}$

$$= \frac{\overrightarrow{b} \cdot \overrightarrow{a} - \left| \overrightarrow{b} \right|^2}{\left| \overrightarrow{a} - \overrightarrow{b} \right|} = \frac{3 - \frac{7}{3}}{\sqrt{\frac{7}{3}}}$$
$$= \frac{2}{\sqrt{21}}$$

Solution 78

$$Median = \frac{2k+12}{2} = k+6$$

Mean deviation = $\sum rac{|x_i-M|}{n}=6$

$$\Rightarrow \frac{(k+3) + (K+1) + (k-1) + (6-k) + (6-k) + (10-k) + (15-k) + (18-k)}{8}$$

$$\therefore \frac{58-2k}{8} = 6$$

$$k = 5$$

$$Median = \frac{2 \times 5 + 12}{2} = 11$$

Hence, the correct answer is option D.

Solution 79

$$2\sin\frac{\pi}{22}\sin\frac{3\pi}{22}\sin\frac{5\pi}{22}\sin\frac{7\pi}{22}\sin\frac{9\pi}{22}$$

$$=2\sin\left(rac{11\pi-10\pi}{22}
ight)\sin\left(rac{11\pi-8\pi}{22}
ight)\sin\left(rac{11\pi-6\pi}{22}
ight)\sin\left(rac{11\pi-4\pi}{22}
ight)\sin\left(rac{11\pi-2\pi}{22}
ight)$$

$$=2\cos\frac{\pi}{11}\cos\frac{2\pi}{11}\cos\frac{3\pi}{11}\cos\frac{4\pi}{11}\cos\frac{5\pi}{11}$$

$$= \frac{2\sin\frac{32\pi}{11}}{2^5\sin\frac{\pi}{11}}$$

$$=\frac{1}{16}$$

Hence, the correct answer is option B.

Solution 80

P: Ramu is intelligent

Q: Ramu is rich

R: Ramu is not honest

Given statement, "Ramu is intelligent and honest if and only if Ramu is not rich" $=(P \land \neg R) \Leftrightarrow \neg Q$

So, negation of the statement is

Solution 81

$$(B \cup C)' = B' \cap C'$$

B' is a set containing sub sets of A containing element 1 and not containing 2. And C' is a set containing subsets of A whose sum of elements is not prime. So, we need to calculate number of subsets of $\{3, 4, 5, 6, 7\}$ whose sum of elements plus 1 is composite.

Number of such 5 elements subset = 1

Number of such 4 elements subset = 3 (except selecting 3 or 7)

Number of such 3 elements subset = 6 (except selecting $\{3, 4, 5\}$, $\{3, 6, 7\}$, $\{4, 5, 7\}$ or $\{5, 6, 7\}$) Number of such 2 elements subset = 7 (except selecting $\{3, 7\}$, $\{4, 6\}$, $\{5, 7\}$)

Number of such 1 elements subset = 3 (except selecting $\{4\}$ or $\{6\}$)

Number of such 0 elements subset = 1

$$n(B'\cap C')=21\Rightarrow n(B\cup C)=2^7\text{--}21=107$$

Solution 82

Let
$$f(x) = (x - \alpha)(x - \beta)$$

It is given that $f(0) = p \Rightarrow \alpha\beta = p$

and
$$f(1) = \frac{1}{3} \Rightarrow (1 - \alpha)(1 - \beta) = \frac{1}{3}$$

Now, let us assume that α is the common root of f(x) = 0 and fofofof(x) = 0

$$fofofof(x) = 0$$

$$\Rightarrow fofof(0) = 0$$

$$\Rightarrow fof(p) = 0$$

So, f(p) is either α or β .

$$egin{aligned} (p-lpha)\; (p-eta) &= lpha \ (lphaeta-lpha)\; (lphaeta-eta) &= lpha \Rightarrow (eta-1)\; (lpha-1)\; eta &= 1 \end{aligned}$$
 $(\because \; lpha
eq 0)$

So,
$$\beta = 3$$

$$egin{aligned} \left(1-lpha
ight)\left(1-3
ight) &= rac{1}{3} \ lpha &= rac{7}{6} \ f\left(x
ight) &= \left(x-rac{7}{6}
ight)\left(x-3
ight) \ f\left(-3
ight) &= \left(-3-rac{7}{6}
ight)\left(3-3
ight) = 25 \end{aligned}$$

$$A = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} + egin{bmatrix} 0 & a & a \ 0 & 0 & b \ 0 & 0 & 0 \end{bmatrix} = I + B \ B^2 = egin{bmatrix} 0 & a & a \ 0 & 0 & b \ 0 & 0 & 0 \end{bmatrix} + egin{bmatrix} 0 & a & a \ 0 & 0 & b \ 0 & 0 & 0 \end{bmatrix} = egin{bmatrix} 0 & 0 & ab \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

$$B^3 = 0$$

$$\begin{array}{l} \therefore \ A^n = (1+B)^n = {}^n C_0 l + {}^n C_1 \ B + {}^n C_2 \ B^2 + {}^n C_3 \ B^3 + \dots \\ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & na & na \\ 0 & 0 & nb \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & \frac{n(n-1)ab}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} 1 & na & na + \frac{n(n-1)}{2}ab \\ 0 & 1 & nb \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 48 & 2160 \\ 0 & 1 & 48 \\ 0 & 0 & 1 \end{bmatrix}$$

On comparing we get na = 48, nb = 96 and

$$na+rac{n(n-1)}{2}ab=2160$$

 $\Rightarrow a=4,\; n=12 \; ext{and} \; b=8$
 $n+a+b=24$

Solution 84

$$f(x) = |5x - 7| + [x^2 + 2x]$$

= |5x - 7| + [(x + 1)^2] - 1

Critical points of

$$f(x) = \frac{7}{5}, \ \sqrt{5} - 1, \ \sqrt{6} - 1, \ \sqrt{7} - 1, \ \sqrt{8} - 1, \ 2$$

 \therefore Maximum or minimum value of f(x) occur at critical points or boundary points

$$\therefore f\left(\frac{5}{4}\right) = \frac{3}{4} + 4 = \frac{19}{4}$$

$$f\left(\frac{7}{5}\right) = 0 + 4 = 4$$

as both |5x – 7| and x^2 + 2x are increasing in nature after $x=rac{7}{5}$

$$f(2) = 3 + 8 = 11$$

$$\therefore f\left(\frac{7}{5}\right)_{\min} = 4 \text{ and } f(2)_{\max} = 11$$

Sum is 4 + 11 = 15

$$rac{dy}{dx} = rac{y}{x} rac{\left(4y^2 + 2x^2
ight)}{\left(3y^2 + x^2
ight)}$$

Put
$$y = vx$$
 $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{v(4v^2 + 2)}{(3v^2 + 1)}$$

$$\Rightarrow x \frac{dv}{dx} = v \left(\frac{(4v^2 + 2 - 3v^2 - 1)}{3v^2 + 1} \right)$$

$$\Rightarrow \int (3v^2 + 1) \frac{dv}{v^3 + v} = \int \frac{dx}{x}$$

$$\Rightarrow \ln |v^3 + v| = \ln x + c$$

$$\Rightarrow \ln \left| \left(\frac{y}{x} \right)^3 + \left(\frac{y}{x} \right) \right| = \ln x + C$$

$$\downarrow y(1) = 1$$

$$\Rightarrow C = \ln 2$$

$$\therefore \text{ for } y\left(2\right)$$

$$\ln \left(\frac{y^3}{8} + \frac{y}{2} \right) = 2 \ln 2 \Rightarrow \frac{y^3}{8} + \frac{y}{2} = 4$$

$$\Rightarrow [y(2)] = 2$$

$$\Rightarrow n = 3$$

$$\therefore f(x) + \int\limits_0^x (x-t) \, f'(t) dt = \left(e^{2x} + e^{-2x}\right) \cos 2x + rac{2x}{a} \qquad \qquad \ldots ext{(i)}$$

Here f(0) = 2 ...(ii)

On differentiating equation (i) w.r.t. x we get :

$$egin{aligned} f'(x) + \int \int \int f'(t)dt + xf'(x) - xf'(x) &= 2\left(e^{2x} - e^{-2x}
ight)\,\cos 2x - 2\left(e^{2x} + e^{-2x}
ight)\sin 2x + f'(x) + f(x) - f(0) &= 2\left(e^{2x} - e^{-2x}
ight)\cos 2x - 2\left(e^{2x} + e^{-2x}
ight)\sin 2x + rac{2}{a} \end{aligned}$$

Replace x by 0 we get :

$$\Rightarrow 4 = \frac{2}{a} \Rightarrow a = \frac{1}{2}$$
.

$$\therefore (2a+1)^5 \cdot a^2 = 2^5 \cdot \frac{1}{2^2} = 2^3 = 8$$

$$egin{aligned} a_n &= \int\limits_{-1}^n \left(1 + rac{x}{2} + rac{x^2}{3} + + rac{x^{n-1}}{n}
ight) dx \ &= \left[x + rac{x^2}{2^2} + rac{x^3}{3^2} + + rac{x^n}{n^2}
ight]_{-1}^n \ a_n &= rac{n+1}{1^2} + rac{n^2-1}{2^2} + rac{n^3+1}{3^2} + rac{n^4-1}{4^2} + + rac{n^n+(-1)^{n+1}}{n^2} \ & ext{Here} \ a_1 &= 2, \ a_2 &= rac{2+1}{1} + rac{2^2-1}{2} = 3 + rac{3}{2} = rac{9}{2} \ a_3 &= 4 + 2 + rac{28}{9} = rac{100}{9} \ a_4 &= 5 + rac{15}{4} + rac{65}{9} + rac{255}{16} > 31. \end{aligned}$$

- \therefore The required set is $\{2, 3\}$.
- ∴ $a_n \in (2, 30)$
- \therefore Sum of elements = 5.

The circle $x^2+y^2+6x+8y+16=0$ has centre (-3, -4) and radius 3 units. The circle $x^2+y^2+2\left(3-\sqrt{3}\right)x+2\left(4-\sqrt{6}\right)y=k+6\sqrt{3}+8\sqrt{6},\ k>0$ has centre $\left(\sqrt{3}-3,\ \sqrt{6}-4\right)$ and radius $\sqrt{k+34}$

These two circles touch internally hence $\sqrt{3+6}=\left|\sqrt{k+34}-3\right|$.

Here, k = 2 is only possible (: k > 0)

Equation of common tangent to two circles is

$$2\sqrt{3x} + 2\sqrt{6}y + 16 + 6\sqrt{3} + 8\sqrt{6} + k = 0$$

$$\therefore$$
 $k=2$ then equation is $x+\sqrt{2}y+3+4\sqrt{2}+3\sqrt{3}=0$ (i)

 (α, β) are foot of perpendicular from (-3, -4)

To line (i) then

$$\frac{\alpha+3}{1} = \frac{\beta+4}{\sqrt{2}} = \frac{-\left(-3-4\sqrt{2}+3+4\sqrt{2}+3\sqrt{3}\right)}{1+2}$$

$$\therefore \alpha + 3 = \frac{\beta+4}{\sqrt{2}} = -\sqrt{3}$$

$$\Rightarrow \left(\alpha + \sqrt{3}\right)^2 = 9 \text{ and } \left(\beta + \sqrt{6}\right)^2 = 16$$

$$\therefore \left(\alpha + \sqrt{3}\right)^2 + \left(\beta + \sqrt{6}\right)^2 = 25$$

Solution 89

 $4x^3 - 3xy^2 + 6x^2 - 5xy - 8y^2 + 9x + 14 = 0$ differentiating both sides we get

$$12x^{2} - 3y^{2} - 6xyy' + 12x - 5y - 5xy' - 16yy' + 9 = 0$$

$$\downarrow (-2, 3)$$

$$\Rightarrow 48 - 27 + 36y' - 24 - 15 + 10y' - 48y' + 9 = 0$$

$$\Rightarrow 2y' = -9$$

$$\Rightarrow m_{T} = \frac{-9}{2} \& m_{N} = \frac{2}{9}$$

$$T\equiv y-3=rac{-9}{2}\left(x+2
ight) \& \quad N\equiv y-3=rac{2}{9}\left(x+2
ight) \ \downarrow y=0 \ x=rac{-4}{3} \qquad \qquad x=rac{-31}{2}$$

 \therefore Area = $\frac{1}{2} \times \text{Base} \times \text{Height}$

$$A = \frac{1}{2} \times \left(\frac{-4}{3} + \frac{31}{2}\right)(3) = \frac{1}{2} \left(\frac{85}{6}\right) \cdot 3 = \frac{85}{4}$$
$$= 8A = 170$$

$$\therefore x = \sin\left(2\tan^{-1}\alpha\right) = \frac{2\alpha}{1+\alpha^2} \qquad \dots (i)$$
and
$$y = \sin\left(\frac{1}{2}\tan^{-1}\frac{4}{3}\right) = \sin\left(\sin^{-1}\frac{1}{\sqrt{5}}\right) = \frac{1}{\sqrt{5}}$$

Now,
$$y^2 = 1 - x$$

$$egin{aligned} rac{1}{5} &= 1 - rac{2lpha}{1+lpha^2} \ \Rightarrow 1 + lpha^2 &= 5 + 5lpha^2 - 10lpha \ \Rightarrow 2lpha^2 - 5lpha + 2 &= 0 \ \therefore lpha &= 2, \ rac{1}{2} \end{aligned}$$

$$\therefore \sum_{\alpha \in S} 16\alpha^{3} = 16 \times 2^{3} + 16 \times \frac{1}{2^{3}}$$
=130