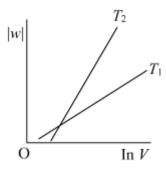



## **Thermodynamics**

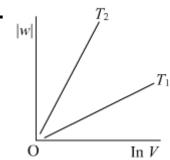
**Q.No.1:** Which of the following lines correctly show the temperature dependence of equilibrium constant, K, for an exothermic reaction?

**JEE 2018** 

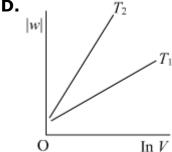



- A. C and D
- B. A and D
- C. A and B
- D. B and C

**Q.No.2:** Consider the reversible isothermal expansion of an ideal gas in a closed system at two different temperatures  $T_1$  and  $T_2$  ( $T_1 < T_2$ ). The correct graphical depiction of dependence of work done (w) on the final volume (V) is :


**JEE 2019** 




В.



C.



D.



Q.No.3: The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is:

(Specific heat of water liquid and water vapour are 4.2 kJ  $\rm K^{-1}~kg^{-1}$  and 2.0 kJ  $K^{-1}$  kg<sup>-1</sup>; heat of liquid fusion and vapourisation of water are 334 kJ kg<sup>-1</sup> and 2491 kJ kg<sup>-1</sup>, respectively). (log 273 = 2.436, log 373 = 2.572, log 383= 2.583) **JEE 2019** 

- **A.** 7.90 kJ  $kg^{-1} K^{-1}$
- **B.**  $2.64 \text{ kJ kg}^{-1} \text{ K}^{-1}$
- **C.** 8.49 kJ kg $^{-1}$  K $^{-1}$
- **D.**  $9.26 \text{ kJ kg}^{-1} \text{ K}^{-1}$

**Q.No.4:** A process has  $\Delta H = 200 \text{ Jmol}^{-1}$  and  $\Delta S = 40 \text{ JK}^{-1} \text{ mol}^{-1}$ . Out of the values given below, choose the minimum temperature above which the process will be spontaneous: **JEE 2019** 

**A.** 20 K

- **B.** 12 K
- **C.** 5 K
- **D.** 4 K

**Q.No.5:** The process with negative entropy change is :

**JEE 2019** 

- A. Dissociation of CaSO<sub>4</sub>(s) to CaO(s) and SO<sub>3</sub>(g)
- B. Sublimation of dry ice
- C. Dissolution of iodine in water
- **D.** Synthesis of ammonia from N<sub>2</sub> and H<sub>2</sub>

**Q.No.6:** An ideal gas undergoes iso-thermal compression from 5 m<sup>3</sup> to 1 m<sup>3</sup> against a constant external pressure of 4 Nm<sup>-2</sup>. Heat released in this process is used to increase the temperature of 1 mole of Al. If molar heat capacity of Al is 24 J mol<sup>-1</sup> K<sup>-1</sup>, the temperature of Al increases by : **JEE 2019** 

- **A.**  $\frac{3}{2}$ **K**
- **B.** 2 K
- C.  $\frac{2}{3}$ K
- **D.** 1 K

**Q.No.7:** The reaction, MgO(s) + C(s)  $\rightarrow$  Mg(s) + CO(g), for which  $\Delta_r H^\circ$  = + 491.1 kJ mol<sup>-1</sup> and  $\Delta_r S^\circ$  = 198.0 JK<sup>-1</sup> mol<sup>-1</sup>, is not feasible at 298 K. Temperature above which reaction will be feasible is :

- **A.** 2040.5 K
- **B.** 1890.0 K
- **C.** 2480.3 K
- **D.** 2380.5 K

**Q.No.8:** The standard reaction Gibbs energy for a chemical reaction at an absolute temperature T is given by  $\Delta_r G^\circ = A - BT$ 

Where A and B are non-zero constants. Which of the following is **TRUE** about this reaction?

JEE 2019

- **A.** Endothermic if A > 0
- **B.** Exothermic if A > 0 and B < 0
- **C.** Endothermic if A < 0 and B > 0

**Q.No.9:** Two blocks of the same metal having same mass and at temperature  $T_1$  and  $T_2$ , respectively, are brought in contact with each other and allowed to attain thermal equilibrium at constant pressure. The change in entropy,  $\Delta S$ , for this process is:

JEE 2019

A. 
$$C_{
m p} \, \ln \, \left\lceil rac{\left(T_1 + T_2
ight)^2}{4T_1T_2} 
ight
ceil$$

**B.** 
$$2C_{\mathrm{p}} \, \ln \, \left\lceil \frac{\left(T_{1}+T_{2}\right)^{\frac{1}{2}}}{T_{1}T_{2}} \right
ceil$$

**C.** 
$$2C_{\mathrm{p}}$$
 ln  $\left(\frac{T_{1}+T_{2}}{4T_{1}T_{2}}\right)$ 

**D.** 
$$2C_{
m p}$$
 ln  $\left\lceil rac{T_1+T_2}{2T_1T_2}
ight
ceil$ 

**Q.No.10:** The formula of a gaseous hydrocarbon which requires 6 times of its own volume of  $O_2$  for complete oxidation and produces 4 times its own volume of  $CO_2$  is  $C_xH_y$ . The value of y is \_\_\_\_\_. **JEE 2021**