

Equilibrium

Q.No.1: Which of the following salts is the most basic in aqueous solution?

JEE 2018

- A. FeCl₃
- **B.** Pb(CH₃COO)₂
- C. $AI(CN)_3$
- **D.** CH₃COOK

Q.No.2: An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination?

JEE 2018

- A. Base Acid End point
 Weak Strong Yellow to pinkish red
- B. Base Acid End point
 Strong Strong Pink to colourless
- C. Base Acid End point

 Weak Strong Colourless to pink
- **D. Base Acid End point**Strong Strong Pinkish red to yellow

Q.No.3: An aqueous solution contains 0.10 M H_2S and 0.20 M HCl. If the equilibrium constants for the formation of HS^- from H_2S is 1.0×10^{-7} and that of S^{2-} from HS^- ions is 1.2×10^{-13} then the concentration of S^{2-} ions in aqueous solution is :

- **A.** 6×10^{-21}
- **B.** 5×10^{-19}
- **C.** 5×10^{-8}
- **D.** 3×10^{-20}

Q.No.4: 20 mL of 0.1 M H_2SO_4 solution is added to 30 mL of 0.2 M NH_4OH solution. The pH of the resultant mixture is: [p k_b of $NH_4OH = 4.7$]. **JEE 2019**

- **A.** 5.2
- **B.** 9.0
- **C.** 5.0
- **D.** 9.4

Q.No.5: Consider the following reversible chemical reactions:

$$A_2(g) + B_2(g) \xrightarrow{K_1} 2AB(g) \dots$$
 (1)

$$6AB(g) \xleftarrow{K_2} 3A_2(g) + 3B_2(g) \dots \quad (2)$$

The relation between K_1 and K_2 is:

JEE 2019

- **A.** $K_1K_2 = \frac{1}{3}$
- **B.** $K_2 = K_1^3$
- **C.** $K_2 = K_1^{-3}$
- D. $K_1K_2=3$

Q.No.6: The values of K_p/K_c for the following reactions at 300 K are, respectively:

(At 300 K, $RT = 24.62 \text{ dm}^3 \text{ atm mol}^{-1}$)

$$N_2(g) + O_2(g) = 2NO(g)$$

 $N_2O_4(g) = 2NO_2(g)$

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

JEE 2019

- **A.** 1, 24.62 dm 3 atm mol $^{-1}$, 606.0 dm 6 atm 2 mol $^{-2}$
- **B.** 1, 24.62 dm³ atm mol⁻¹, 1.65×10^{-3} dm⁻⁶ atm⁻² mol²
- **C.** $1, 4.1 \times 10^{-2} \text{ dm}^{-3} \text{ atm}^{-1} \text{ mol}, 606 \text{ dm}^{6} \text{ atm}^{2} \text{ mol}^{-2}$
- **D.** 24.62 dm 3 atm mol $^{-1}$, 606.0 dm 6 atm 2 mol $^{-2}$, 1.65 × 10 $^{-3}$ dm $^{-6}$ atm $^{-2}$ mol 2

Q.No.7: 5.1 g NH₄SH is introduced in 3.0 L evacuated flask at 327°C. 30% of the solid NH₄SH decomposed to NH₃ and H₂S as gases. The K_p of the reaction at 327°C is (R = 0.082 L atm mol⁻¹ K^{-1} , Molar mass of S = 32 g mol⁻¹, molar mass of N = 14 g mol⁻¹)

A.
$$0.242 \times 10^{-4} \text{ atm}^2$$

- **B.** $1 \times 10^{-4} \text{ atm}^2$
- **C.** $4.9 \times 10^{-3} \text{ atm}^2$
- **D.** 0.242 atm²

Q.No.8: For an elementary chemical reaction, $A_2 \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} 2A$, the expression for

 $\frac{d[{
m A}]}{dt}$ is:

JEE 2019

- **A.** $k_1[A_2] k_{-1}[A]^2$
- **B.** $2k_1[A_2] k_{-1}[A]^2$
- **C.** $k_1[A_2] + k_{-1}[A]^2$
- **D.** $2k_1[A_2] 2k_{-1}[A]^2$

Q.No.9: For the equilibrium, $2H_2O = H_3O^+ + OH^-$, the value of ΔG° at 298 K is approximately:

- **A.** 100 kJ mol^{-1}
- **B.** -80 kJ mol^{-1}
- **C.** 80 kJ mol $^{-1}$
- **D.** -100 kJ mol^{-1}

Q.No.10: Consider the reaction

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

The equilibrium constant of the above reaction is $K_{\rm p}$. If pure ammonia is left to dissociate, the partial pressure of ammonia at equilibrium is given by (Assume that $p_{\rm NH_3} \ll p_{\rm total}$ at equilibrium)

- **A.** $\frac{3^{\frac{3}{2}}K_{\rm p}^{\frac{1}{2}}P^2}{16}$
- **B.** $\frac{K_{\rm p}^{\frac{1}{2}}P^2}{16}$
- **C.** $\frac{K_{\rm p}^{\frac{1}{2}}P^2}{4}$
- $\mathbf{D.} \ \frac{3^{\frac{3}{2}} K_{\mathrm{p}}^{\frac{1}{2}} P^2}{4}$