

The p-block Elements

Q.No.1: The pair in which phosphorous atoms have a formal oxidation state of +3 is:

JEE 2016

- A. Pyrophosphorous and hypophosphoric acids
- **B.** Orthophosphorous and hypophosphoric acids
- C. Pyrophosphorous and pyrophosphoric acids
- **D.** Orthophosphorous and pyrophosphorous acids

Q.No.2: The reaction of zinc with dilute and concentrated nitric acid, respectively, produces:

JEE 2016

- A. NO₂ and NO
- **B.** NO and N₂O
- $\boldsymbol{\mathsf{C.}}\ NO_2$ and N_2O
- **D.** N₂O and NO₂

Q.No.3: Which of the following are Lewis acids?

JEE 2018

- A. PH₃ and SiCI₄
- B. BCI₃ and AICI₃
- C. PH₃ and BCI₃
- **D.** AICI₃ and SiCI₄

Q.No.5: Correct statements among a to d regarding silicones are:

- (a) They are polymers with hydrophobic character.
- (b) They are biocompatible.
- (c) In general, they have high thermal stability and low dielectric strength.
- (d) Usually, they are resistant to oxidation and used as greases. **JEE 2019**
 - **A.** (a), (b), (c) and (d)
 - **B.** (a), (b), and (c) only
 - C. (a) and (b) only
 - **D.** (a), (b) and (d) only

Q.No.6: Aluminium is usually found in +3 oxidation state. In contrast, thallium exists in +1 and +3 oxidation states. This due to:

JEE 2019

- A. inert pair effect
- B. diagonal relationship
- **C.** lattice effect
- **D.** lanthanoid contraction

Q.No.7: Good reducing nature of H_3PO_2 is attributed to the presence of:

JEE 2019

- A. Two P OH bonds
- B. One P H bond
- C. Two P H bonds
- D. One P OH bond

Q.No.8: The electronegativity of aluminium is similar to: JEE 2019

- A. Carbon
- **B.** Beryllium
- C. Boron

D. Lithium

Q.No.9: Among the following reactions of hydrogen with halogens, the one that requires a catalyst is:

JEE 2019

- **A.** $H_2 + I_2 \rightarrow 2HI$
- $\textbf{B.} \ \, \text{H}_2 \, + \, \text{Cl}_2 \rightarrow 2 \text{HCl}$
- **C.** $H_2 + Br_2 \rightarrow 2HBr$
- **D.** $H_2 + F_2 \rightarrow 2HF$

Q.No.10: The pair that contains two P-H bonds in each of the oxoacids is : **JEE 2019**

- **A.** $H_4P_2O_5$ and $H_4P_2O_6$
- **B.** H_3PO_2 and $H_4P_2O_5$
- **C.** H_3PO_3 and H_3PO_2
- **D.** $H_4P_2O_5$ and H_3PO_3