

Chemical Kinetics

Q.No.1:

The rate constant for a reaction of zero order in A is 0.0030 mol L^{-1} s⁻¹. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?

CBSE Board Paper 2010

Q.No.2:

Define 'rate of a reaction'.

CBSE Board Paper 2010

Q.No.3: The rate constant for the first-order decomposition of H_2O_2 is given by the following equation:

$$\log k = 14.2 - \frac{1.0 \times 10^4}{T} \text{K}$$

Calculate E_a for this reaction and rate constant k if its half-life period be 200 minutes.

(Given: $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)

CBSE Board Paper 2016

Q.No.4:

Distinguish between 'rate expression' and 'rate constant' of a reaction.

CBSE Board Paper 2011

Q.No.5:

- (a) A reaction is second order in A and first order in B.
- (i) Write the differential rate equation.
- (ii) How is the rate affected on increasing the concentration of A three times?
- (iii) How is the rate affected when the concentrations of both A and B are doubled?
- (b) A first order reaction takes 40 minutes for 30% decomposition. Calculate $t_{1/2}$ for this reaction. (Given log 1.428 = 0.1548) **(5)**

OR

(a) For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

(b) Rate constant 'k' of a reaction varies with temperature 'T' according to the equation:

$$\log k = \log A - \frac{E_a}{2.303R} \left(\frac{1}{T} \right)$$

Where E_a is the activation energy. When a graph is plotted for $\log k \operatorname{Vs.} \frac{1}{T}$, a straight line with a slope of -4250 K is obtained. Calculate ' E_a ' for the reaction. (R = 8.314 JK⁻¹ mol⁻¹)

CBSE Board Paper 2013

Q.No.6:

What do you understand by the 'order of a reaction'? Identify the reaction order from each of the following units of reaction rate constant:

- (i) L^{-1} mol s^{-1}
- (ii) L $mol^{-1} s^{-1}$

CBSE Board Paper 2012

Q.No.7:

For the reaction

 $2NO_{(g)} + Cl_{2(g)} \rightarrow 2 NOCl_{(g)}$

The following data were collected. All the measurements were taken at 263 K:

Experiment No.	Initial [NO] (M)	Initial [C/ ₂] (M)	Initial rate of disappearance of CI ₂ (M/min)	
1	0.15	0.15	0.60	
2	0.15	0.30	1.20	
3	0.30	0.15	2.40	
4	0.25	0.25	?	

- (a) Write the expression for rate law.
- (b) Calculate the value of rate constant and specify its units.
- (c) What is the initial rate of disappearance of Cl_2 in exp. 4?

CBSE Board Paper 2012

Q.No.8: The following data were obtained during the first-order thermal decomposition of SO_2CI_2 at a constant volume:

$$SO_2CI_2(g) \rightarrow SO_2(g) + CI_2(g)$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.4
2	100	0.7

Calculate the rate constant.

(Given: $\log 4 = 0.6021$, $\log 2 = 0.3010$)

CBSE Board Paper 2014

Q.No.9: Explain the following terms:

- (i) Rate constant (k)
- (ii) Half life period of a reaction $(t_{1/2})$

CBSE Board Paper 2014

Q.No.10:

For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained :

t/s	0	30	60
[CH ₃ COOCH ₃] / mol	0.60	0.30	0.15
L-1			

- (i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.
- (ii) Calculate the average rate of reaction between the time interval 30 to 60 seconds.

(Given
$$\log 2 = 0.3010$$
, $\log 4 = 0.6021$)

Or

- (a) For a reaction A + B \rightarrow P, the rate is given by Rate = k[A] [B]²
 - (i) How is the rate of reaction affected if the concentration of B is doubled?
 - (ii) What is the overall order of reaction if A is present in large excess?
- (b) A first order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction.

$$(\log 2 = 0.3010)$$

CBSE Board Paper 2015

Q.No.11: For a reaction:

$$2\,\mathrm{NH_3}\!\left(\mathrm{g}
ight) \overset{\mathrm{Pt}}{ o} \mathrm{N_2}\!\left(\mathrm{g}
ight) + 3\mathrm{H_2}\!\left(\mathrm{g}
ight)$$

$$Rate = k$$

- (i) Write the order and molecularity of this reaction.
- (ii) Write the unit of k.

CBSE Board Paper 2016