

Mathematical Induction and Binomial Theorem

Q.No.1:

JEE 2013

- **A.** 4
- **B.** 120 **C.** 210
- **D.** 310

Q.No.2: The sum of coefficient of integral power of x in the binomial expansion of $\left(1-2\sqrt{x}
ight)^{50}$ is : **JEE 2015**

A. $\frac{1}{2} \left(3^{50} + 1 \right)$ **B.** $\frac{1}{2}$ (3⁵⁰) C. $\frac{1}{2} \left(3^{50} - 1 \right)$ **D.** $\frac{1}{2} \left(2^{50} + 1 \right)$

Q.No.3: If the number of terms in the expansion of $\left(1-rac{2}{x}+rac{4}{x^2}
ight)^n,\ x
eq 0,$ is 28, then the sum of the coefficients of the terms in this expansion, is :

JEE 2016

- **A.** 2187
- **B.** 243
- **C.** 729
- **D.** 64

Q.No.4: The sum of the co-efficients of all odd degree terms in the expansion of
$$\left(x + \sqrt{x^3 - 1}\right)^5 + \left(x - \sqrt{x^3 - 1}\right)^5$$
, $(x > 1)$ is :
A. 1
B. 2
C. -1
D. 0

Q.No.5: If the fractional part of the number $\frac{2^{403}}{15}$ is $\frac{k}{15}$, then k is equal to:

- **A.** 6
- **B.** 8
- **C.** 4
- **D.** 14

Q.No.6: The coefficient of t^4 in the expansion of $\left(\frac{1-t^6}{1-t}\right)^3$ is: **JEE 2019**

- **A.** 14
- **B.** 15
- **C.** 10
- **D.** 12

Q.No.7: If the third term in the binomial expansion of $(1 + x^{\log_2 x})^5$ equals 2560, then a possible value of x is: **A.** $\frac{1}{4}$ **B.** $4\sqrt{2}$

C. $\frac{1}{8}$ **D.** $2\sqrt{2}$

Q.No.8: The positive value of λ for which the co-efficient of x^2 in the expression $x^2 \left(\sqrt{x} + \frac{\lambda}{x^2}\right)^{10}$ is 720, is :

JEE 2019

A. 4 **B.** $2\sqrt{2}$ **C.** $\sqrt{5}$ **D.** 3

Q.No.9: The sum of the real values of x for which the middle term in the binomial expansion of $\left(\frac{x^3}{3} + \frac{3}{x}\right)^8$ equals 5670 is: **JEE 2019**

- **A.** 0
- **B.** 6
- **C.** 4
- **D.** 8

Q.No.10: A ratio of the 5th term from the beginning to the 5th term from the **JEE 2019** end in the binomial expansion of $\left(2^{\frac{1}{3}} + \frac{1}{2(3)^{\frac{1}{3}}}\right)^{10}$ is:

A. 1 : $2(6)^{\frac{1}{3}}$ **B.** 1 : $4(16)^{\frac{1}{3}}$ **C.** $4(36)^{\frac{1}{3}}$: 1 **D.** $2(36)^{\frac{1}{3}}$: 1