

Vector Algebra

Q.No.1:

If the vectors $\overrightarrow{AB}=3\hat{i}+4\hat{k}$ and $\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is :

- **A.** $\sqrt{18}$
- **B.** $\sqrt{72}$
- **C.** $\sqrt{33}$
- **D.** $\sqrt{45}$

Q.No.2: Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non-zero vectors such that no two of them are collinear and $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \frac{1}{3} |\overrightarrow{b}| |\overrightarrow{c}| \overrightarrow{a}$. If θ is the angle between vectors \overrightarrow{b} and \overrightarrow{c} then a value of sin θ is: **A.** $\frac{2\sqrt{2}}{3}$ **B.** $\frac{-\sqrt{2}}{3}$ **C.** $\frac{2}{3}$ **D.** $\frac{-2\sqrt{3}}{3}$

Q.No.3: Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three unit vectors such that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \frac{\sqrt{3}}{2} \left(\overrightarrow{b} + \overrightarrow{c}\right)$. If \overrightarrow{b} is not parallel to \overrightarrow{c} , then the angle between \overrightarrow{a} and \overrightarrow{b} is: **A.** $\frac{\pi}{2}$

JEE 2013

B. $\frac{2\pi}{3}$ **C.** $\frac{5\pi}{6}$ **D.** $\frac{3\pi}{4}$

Q.No.4: Let $\overrightarrow{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + \hat{j}$. Let \overrightarrow{c} be a vector such that $|\overrightarrow{c} - \overrightarrow{a}| = 3$, $|(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}| = 3$ and the angle between \overrightarrow{c} and $\overrightarrow{a} \times \overrightarrow{b}$ be 30°. Then $\overrightarrow{a} \cdot \overrightarrow{c}$ is equal to **A.** $\frac{25}{8}$ **B.** 2 **C.** 5 **D.** $\frac{1}{8}$

Q.No.5: Let \overrightarrow{u} be a vector coplanar with the vectors $\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$. If \overrightarrow{u} is perpendicular to \overrightarrow{a} and $\overrightarrow{u} \cdot \overrightarrow{b} = 24$, then $\left|\overrightarrow{u}\right|^2$ is equal to : **A.** 256

- **B.** 84
- **C.** 336
- **D.** 315

Q.No.6: The length of the projection of the line segment joining the points (5, -1, 4) and (4, -1, 3) on the plane, x + y + z = 7 is : **JEE 2018**

A. $\frac{1}{3}$ **B.** $\sqrt{\frac{2}{3}}$ **C.** $\frac{2}{\sqrt{3}}$ **D.** $\frac{2}{3}$

Q.No.7: Let $\overrightarrow{a} = \hat{i} - \hat{j}, \ \overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ and \overrightarrow{c} be a vector such that

$$\overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} = \overrightarrow{0}$$
 and $\overrightarrow{a} \cdot \overrightarrow{c} = 4$, then $\left|\overrightarrow{c}\right|^2$ is equal to:
A. $\frac{19}{2}$
B. 9
C. 8
D. $\frac{17}{2}$

Q.No.8: Let

 $\overrightarrow{a} = \hat{i} + \hat{j} + \sqrt{2}\hat{k}, \ \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + \sqrt{2}\hat{k} \text{ and } \overrightarrow{c} = 5\hat{i} + \hat{j} + \sqrt{2}\hat{k} \text{ be three}$ vectors such that the projection vector of \overrightarrow{b} on \overrightarrow{a} is \overrightarrow{a} . If $\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then $\left|\overrightarrow{b}\right|$ is equal to:

A. $\sqrt{32}$ **B.** 6 **C.** $\sqrt{22}$ **D.** 4

Q.No.9: Let $\overrightarrow{a} = 2\hat{i} + \lambda_1\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 4\hat{i} + (3 - \lambda_2)\hat{j} + 6\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 6\hat{j} + (\lambda_3 - 1)\hat{k}$ be three vectors such that $\overrightarrow{b} = 2\overrightarrow{a}$ and \overrightarrow{a} is perpendicular to \overrightarrow{c} . Then a possible value of $(\lambda_1, \lambda_2, \lambda_3)$ is: **JEE 2019**

A. (1, 3, 1)B. $\left(-\frac{1}{2}, 4, 0\right)$ C. $\left(\frac{1}{2}, 4, -2\right)$ D. (1, 5, 1)

Q.No.10: Let $\overrightarrow{\alpha} = (\lambda - 2)\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{\beta} = (4\lambda - 2)\overrightarrow{a} + 3\overrightarrow{b}$ be two given vectors where vectors \overrightarrow{a} and \overrightarrow{b} are non-collinear. The value of λ for which vectors $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ are collinear, is : **A.** -4

- **B.** -3
- **C.** 4
- **D.** 3