

Chemical Kinetics

Q.No.1: At 518°C, the rate of decomposition of a sample of gaseous acetaldehyde, initially at a pressure of 363 Torr, was 1.00 Torr $\rm s^{-1}$ when 5% had reacted and 0.5 Torr $\rm s^{-1}$ when 33% had reacted. The order of the reaction is:

JEE 2018

- **A.** 1
- **B.** 0
- **C.** 2
- **D.** 3

Q.No.2: The following results were obtained during kinetic studies of the reaction;

 $2A + B \rightarrow Products$

Experiment	[A]	[B]	Initial Rate of
	(in mol	(in mol	reaction
	$L^{-1})$	$L^{-1})$	(in mol L^{-1} min ⁻¹)
I	0.10	0.20	6.93×10^{-3}
II	0.10	0.25	6.93×10^{-3}
III	0.20	0.30	1.386×10^{-2}

The time (in minutes) required to consume half of A is:

JEE 2019

- **A.** 5
- **B.** 10
- **C.** 1
- **D.** 100

Q.No.3: For the reaction, $2A + B \rightarrow \text{products}$, when the concentrations of A and B both were doubled, the rate of the reaction increased from 0.3 mol $L^{-1}s^{-1}$ to 2.4 mol $L^{-1}s^{-1}$. When the concentration of A alone is doubled, the rate increased from 0.3 mol $L^{-1}s^{-1}$ to 0.6 mol $L^{-1}s^{-1}$. Which one of the following statements is correct?

- A. Total order of the reaction is 4
- **B.** Order of the reaction with respect to B is 2
- C. Order of the reaction with respect to B is 1
- **D.** Order of the reaction with respect to A is 2

Q.No.4: Consider the given plots for a reaction obeying Arrhenius equation (0 $^{\circ}$ C < T < 300 $^{\circ}$ C) : (k and E_a are rate constant and activation energy,

Choose the correct option:

JEE 2019

- A. I is right but II is wrong
- B. Both I and II are correct
- **C.** I is wrong but II is right
- D. Both I and II are wrong

Q.No.5: If a reaction follows the Arrhenius equation, the plot $\ln k$ vs $\frac{1}{(RT)}$ gives straight line with a gradient (-y) unit. The energy required to activate the reactant is:

- **A.** y/R unit
- **B.** y unit
- C. yR unit
- **D.** –*y* unit

Q.No.6: The reaction $2X \to B$ is a zeroth order reaction. If the initial concentration of X is 0.2 M, the half-life is 6 h. When the initial concentration of X is 0.5 M, the time required to reach its final concentration of 0.2 M will be:

JEE 2019

- **A.** 9.0 h
- **B.** 12.0 h
- **C.** 18.0 h
- **D.** 7.2 h

Q.No.7: Sucrose hydrolyses in acid solution into glucose and fructose following first order rate law with a half-life of 3.33 h at 25°C. After 9 h, the fraction of sucrose remaining is f. The value of $\log_{10}\left(\frac{1}{f}\right)$ is _____ × 10⁻². (Rounded off

to the nearest integer)

[Assume : In 10 = 2.303, in 2 = 0.693]

JEE 2021

Q.No.8: For the reaction, aA + bB \rightarrow cC +dD, the plot of log k vs $\frac{1}{T}$ is given below:

The temperature at which the rate constant of the reaction is $10^{-4}s^{-1}$ is K.

(Rounded-off to the nearest integer)

[Given : The rate constant of the reaction is 10^{-5} s⁻¹ at 500 K.]

JEE 2021

Q.No.9: Which of the following forms of hydrogen emits low energy β -particles? **JEE 2021**

- A. Proton H⁺
- **B.** Tritium ${}^3_1\mathrm{H}$
- **C.** Protium ${}^{1}_{1}H$

D. Deuterium ${}^2_1\!H$

Q.No.10: If the activation energy of a reaction is 80.9 kJ mol^{-1} , the fraction of molecules at 700 K, having enough energy to react to form products is $\text{e}^{-\text{X}}$. The value of x is _____. (Rounded off to the nearest integer) [Use R = 8.31 J K-1 mol-1] **JEE 2021**

