

Application of Derivatives

Q.No.1:

The real number k for which the equation, $2x^3 + 3x + k = 0$ has two distinct real roots in [0, 1]

JEE 2013

- **A.** lies between 1 and 2.
- **B.** lies between 2 and 3.
- **C.** lies between -1 and 0.
- D. does not exist.
- **Q.No.2:** The normal to the curve, $x^2 + 2xy 3y^2 = 0$, at (1, 1) : **JEE 2015**
 - A. does not meet the curve again
 - B. meets the curve again in the second quadrant
 - C. meets the curve again in the third quadrant
 - **D.** meets the curve again in the fourth quadrant

Q.No.3:

Let f(x) be a polynomial of degree four having extreme values at x = 1 and x = 2. If $\lim_{x \to 0} \left[1 + \frac{f(x)}{x^2} \right] = 3$, then f(2) is equal to:

JEE 2015

A. - 8 **B.** - 4 **C.** 0 **D.** 4

Q.No.4: A wire of length 2 units is cut into two parts which are bent respectively to form a square of side = x units and a circle of radius = r units. If the sum of the areas of the square and the circle so formed is minimum, then:

Q.No.5: Consider $f(x) = \tan^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)$, $x \in \left(0, \frac{\pi}{2}\right)$. A normal to y = f(x) at $= \frac{\pi}{6}$ also passes through the point : JEE 2016 **A.** $\left(0, \frac{2\pi}{3}\right)$ **B.** $\left(\frac{\pi}{6}, 0\right)$ **C.** $\left(\frac{\pi}{4}, 0\right)$ **D.** (0, 0)

Q.No.6: Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is : **JEE 2017**

- **A.** 12.5
- **B.** 10
- **C.** 25
- **D.** 30

Q.No.7: The normal to the curve y(x - 2)(x - 3) = x + 6 at the point where the curve intersects the y-axis passes through the point : **JEE 2017**

Q.No.8: The radius of a circle, having minimum area, which touches the curve $y = 4 - x^2$ and the lines, y = |x| is **JEE 2017**

A.
$$2(\sqrt{2}+1)$$

B. $2(\sqrt{2}-1)$
C. $4(\sqrt{2}-1)$
D. $4(\sqrt{2}+1)$

Q.No.9: If the curves $y^2 = 6x$, $9x^2 + by^2 = 16$ intersect each other at right angles, then the value of *b* is :

- **A.** 4 **B.** $\frac{9}{2}$
- 2
- **C.** 6
- **D.** $\frac{7}{2}$

Q.No.10: Let $f(x) = x^2 + \frac{1}{x^2}$ and $g(x) = x - \frac{1}{x}$, $x \in \mathbf{R} - \{-1, 0, 1\}$. If $h(x) = \frac{f(x)}{g(x)}$, then the local minimum value of h(x) is : **JEE 2018 A.** $-2\sqrt{2}$ **B.** $2\sqrt{2}$ **C.** 3 **D.** -3