

Three Dimensional Geometry

Q.No.1:

If the lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar, then k can have:

- A. any value.
- **B.** exactly one value.
- C. exactly two values.
- **D.** exactly three values.

Q.No.2:

Distance between two parallel planes 2x + y + 2z = 8 and 4x + 2y + 4z + 5 = 0 is :

JEE 2013

JEE 2013

Q.No.3: The distance of the point (1, 0, 2) from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane x - y + z = 16, is: **JEE 2015 A.** $2\sqrt{14}$ **B.** 8 **C.** $3\sqrt{21}$ **D.** 13

Q.No.4: The equation of the plane containing the line
$$2x - 5y + z = 3$$
; $x + y + 4z = 5$, and parallel to the plane, $x + 3y + 6z = 1$, is :
A. $2x + 6y + 12z = 13$
B. $x + 3y + 6z = -7$
C. $x + 3y + 6z = 7$
D. $2x + 6y + 12z = -13$
Q.No.5: The distance of the point $(1, -5, 9)$ from the plane $x - y + z = 5$
measured along the line $x = y = z$ is :
A. $10\sqrt{3}$
B. $\frac{10}{\sqrt{3}}$
C. $\frac{20}{3}$
D. $3\sqrt{10}$

Q.No.6: If the image of the point P(1, -2, 3) in the plane, 2x + 3y - 4z + 22 = 0 measured parallel to the line, $\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$ is Q, then PQ is equal to :

JEE 2017

A. $3\sqrt{5}$ **B.** $2\sqrt{42}$ **C.** $\sqrt{42}$ **D.** $6\sqrt{5}$

Q.No.7: The distance of the point (1, 3, -7) from the plane passing through the point (1, -1, -1), having normal perpendicular to both the lines $\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-4}{3}$ and $\frac{x-2}{2} = \frac{y+1}{-1} = \frac{z+7}{-1}$, is **JEE 2017 A.** $\frac{20}{\sqrt{74}}$

- **B.** $\frac{10}{\sqrt{83}}$ **C.** $\frac{5}{\sqrt{83}}$ **D.** $\frac{10}{\sqrt{74}}$

Q.No.8: If L₁ is the line of intersection of the planes 2x - 2y + 3z - 2 = 0, x - y + z + 1 = 0 and L₂ is the line of intersection of the planes x + 2y - z - 3 = 0, 3x - y + 2z - 1 = 0, then the distance of the origin from the plane, containing the lines L₁ and L₂, is : **JEE 2018**

A.
$$\frac{1}{2\sqrt{2}}$$

B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{4\sqrt{2}}$
D. $\frac{1}{3\sqrt{2}}$

Q.No.9: The equation of the line passing through (-4, 3, 1), parallel to the plane x + 2y - z - 5 = 0 and intersecting the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z-2}{-1}$ is:

A. $\frac{x-4}{2} = \frac{y+3}{1} = \frac{z+1}{4}$ **B.** $\frac{x+4}{1} = \frac{y-3}{1} = \frac{z-1}{3}$ **C.** $\frac{x+4}{3} = \frac{y-3}{-1} = \frac{z-1}{1}$ **D.** $\frac{x+4}{-1} = \frac{y-3}{1} = \frac{z-1}{1}$

Q.No.10: The plane through the intersection of the planes x + y + z = 1 and 2x + 3y - z + 4 = 0 and parallel to *y*-axis also passes through the point:

JEE 2019

JEE 2019

A. (-3, 0, -1)
B. (-3, 1, 1)
C. (3, 3, -1)
D. (3, 2, 1)