

JEE Main 24 June 2022(Second Shift)

Total Time: 180

Total Marks: 300.0

Physics

Q.No.1: Identify the pair of physical quantities that have same dimensions :

- **A.** velocity gradient and decay constant
- B. wien's constant and Stefan constant
- **C.** angular frequency and angular momentum
- **D.** wave number and Avogadro number

Marks:[4.00]

Q.No.2: The distance between Sun and Earth is R. The duration of year if the distance between Sun and Earth becomes 3R will be:

- **A.** $\sqrt{3}$ years
- **B.** 3 years
- **C.** 9 years
- **D.** $3\sqrt{3}$ years

Marks:[4.00]

Q.No.3: A stone of mass m tied to a string is being whirled in a vertical circle with a uniform speed. The tension in the string is

- **A.** the same throughout the motion.
- **B.** minimum at the highest position of the circular path.
- **C.** minimum at the lowest position of the circular path.
- **D.** minimum when the rope is in the horizontal position.

Marks:[4.00]

Q.No.4: Two identical charged particles each having a mass 10 g and charge 2.0×10^{-7} C are placed on a horizontal table with a separation of L between

	such that they stay in limited equilibring een each particle and the table is 0.25,	
ms^{-2}	•	inia the value of 11 [ose 9 10
Α.	12 cm	
В.	10 cm	
C.	8 cm	
D.	5 cm	
		Marks:[4.00]
	.5: A Carnot engine takes 5000 kcal of heat to a sink at 127°C. The work don	
A.	$3 \times 10^6 \text{J}$	
В.	Zero	• • • • • • • • • • • • • • • • • • • •
C.	12.6 × 10 ⁶ J	
D.	$8.4 \times 10^6 \text{J}$	
	.6: Two massless springs with spring c	
their	masses at their free ends. These two maximum velocities are equal. Then, the tude will be	•
В.	3:2	
C.	3:1	
D.	2:3	
D .	2.5	Marks:[4.00]
Q.No	.7: What will be the most suitable com	bination of three resistors $A = 2 \Omega$,
	$+\Omega$, C = 6 Ω so that $\left(\frac{22}{3}\right)\Omega$ is equivalent	
Α.	Parallel combination of A and C conne	cted in series with B.
B.	Parallel combination of A and B conne	cted in series with C.
C.	Series combination of A and C connec	ted in parallel with B.
D.	Series combination of B and C connect	ed in parallel with A.
		Marks:[4.00]
is bed	.8: The soft-iron is a suitable material cause soft-iron has	for making an electromagnet. This
Α.	Low coercivity and high retentivity	

- B. Low coercivity and low permeabilityC. High permeability and low retentivity
- **D.** High permeability and high retentivity

Q.No.9: A proton, a deuteron and an a-particle with same kinetic energy enter into a uniform magnetic field at right angle to magnetic field. The ratio of the radii of their respective circular paths is :

- **A.** $1:\sqrt{2}:\sqrt{2}$
- **B.** $1:1:\sqrt{2}$
- **C.** $\sqrt{2}:1:1$
- **D.** $1:\sqrt{2}:1$

Marks:[4.00]

Q.No.10: Given below are two statements:

Statement-I: The reactance of an ac circuit is zero.

It is possible that the circuit contains a capacitor and an inductor.

Statement-II: In ac circuit, the average power delivered by the source never becomes zero.

In the light of the above statements, choose the correct answer from the options given below.

- A. Both Statement I and Statement II are true
- **B.** Both Statement I and Statement II are false
- **C.** Statement I is true but Statement II is false
- **D.** Statement I is false but Statement II is true

Q.No.11: Potential energy as a function of r is given by $U=\frac{A}{r^{10}}-\frac{B}{r^5}$, where r is the interatomic distance, A and B are positive constants. The equilibrium distance between the two atoms will be:

- **A.** $\left(\frac{A}{B}\right)^{\frac{1}{5}}$
- **B.** $\left(\frac{B}{A}\right)^{\frac{1}{5}}$
- C. $\left(\frac{2A}{B}\right)^{\frac{1}{5}}$
- $\mathbf{D.} \left(\frac{B}{2A} \right)^{\frac{1}{5}}$

Marks:[4.00]

Q.No.12: An object of mass 5 kg is thrown vertically upwards from the ground. The air resistance produces a constant retarding force of 10 N throughout the motion. The ratio of time of ascent to the time of descent will be equal to [Use $g = 10 \text{ ms}^{-2}$].

- **A.** 1:1
- **B.** $\sqrt{2}:\sqrt{3}$
- C. $\sqrt{3}:\sqrt{2}$
- **D.** 2:3

Marks:[4.00]

Q.No.13: A fly wheel is accelerated uniformly from rest and rotates through 5 rad in the first second. The angle rotated by the fly wheel in the next second, will be:

- A. 7.5 rad

 B. 15 rad

 C. 20 rad
 - **D.** 30 rad

Marks:[4.00]

Q.No.14: A 100 g of iron nail is hit by a 1.5 kg hammer striking at a velocity of 60 ms^{-1} . What will be the rise in the temperature of the nail if one fourth of energy of the hammer goes into heating the nail?

[Specific heat capacity of iron = $0.42 \text{ Jg}^{-1} \, ^{\circ}\text{C}^{-1}$]

A. 675°C

	1600°C	
C. 📋	16.07°C	
D. 6	6.75°C	
		Marks:[4.00
No.1	15: If the charge on a capacitor is increased	l by 2 C. the energy stored in
ncrea	· · · · · · · · · · · · · · · · · · ·	
	eases by 44%. The original charge on the ca	
۹.	eases by 44%. The original charge on the ca	
A. B.	eases by 44%. The original charge on the ca	
A. B. C.	eases by 44%. The original charge on the ca	
A. B. C.	eases by 44%. The original charge on the ca 10 20 30	· · · · · · · · · · · · · · · · · · ·

revolves around the cylinder in a circular path. The kinetic energy of the particle is:

Α.	$rac{ ho q R^2}{4arepsilon_0}$	
В.	$rac{ ho q R^2}{2arepsilon_0}$	
C.	$rac{q ho}{4arepsilon_0 R^2}$	
D.	$rac{4arepsilon_0 R^2}{q ho}$	

Marks:[4.00]

Q.No.17: An electric bulb is rated as 200 W. What will be the peak magnetic field at 4 m distance produced by the radiations coming from this bulb? Consider this bulb as a point source with 3.5% efficiency.

A. 1.19×10^{-8} T	•	
B. 1.71×10^{-8} T		
C. 0.84×10^{-8} T		
D. 3.36×10^{-8} T		

Marks:[4.00]

Q.No.18: The light of two different frequencies whose photons have energies 3.8 eV and 1.4 eV respectively, illuminate a metallic surface whose work function is 0.6 eV successively. The ratio of maximum speeds of emitted electrons for the two frequencies respectively will be

	•	•	,
A. 1 : 1			

B.		2	: 1
C.		4	: 1
D.		1:	4
			Marks:[4.00]
O.No).1 ⁹	9: [•]	Two light beams of intensities in the ratio of 9: 4 are allowed to
_			The ratio of the intensity of maxima and minima will be:
A.		2	: 3
B.		16	: 81
C.		25	: 169
D.	-	25	: 1
			Marks:[4.00]
O No	. 2	n -	In Bohr's atomic model of hydrogen, let K , P and E are the kinetic
			tential energy and total energy of the electron respectively. Choose
			option when the electron undergoes transitions to a higher level:
A.	A	<i>k</i>	C, P and E increase
B.	K	de	ecreases, <i>P</i> and <i>E</i> increase
C.	P	de	creases, K and E increase
D.	K	inc	reases, P and E decrease
			Marks:[4.00]
O.No	.2	1:	A body is projected from the ground at an angle of 45° with the
_			Its velocity after 2 s is 20 ms ⁻¹ . The maximum height reached by
			uring its motion is m. (use $g = 10 \text{ ms}^{-2}$) Marks:[4.00]
\cap No	. 2	7 •	An antenna is placed in a dielectric medium of dielectric constant
			e maximum size of that antenna is 5.0 mm, it can radiate a signal of
minir	nuı	n f	frequency ofGHz.
(Give	en į	۱ _r =	= 1 for dielectric medium) Marks:[4.00]
Q.No	.2	3:	A potentiometer wire of length 10 m and resistance 20 Ω is
conn	ect	ed	in series with a 25 V battery and an external resistance 30 $\Omega.$ A cell
			secondary circuit is balanced by 250 cm long potentiometer wire.
ine v	/alı	ıe	of E (in volt) is $\frac{x}{10}$. The value of x is Marks:[4.00]

Q.No.24: Two travelling waves of equal amplitudes and equal frequencies move in opposite directions along a string. They interfere to produce a stationary wave whose equation is given by $y=\left(10\ \cos\ \pi x\ \sin\frac{2\pi t}{T}\right)\ \mathrm{cm}$
The amplitude of the particle at $x=rac{4}{3}$ cm will be cm.
Marks:[4.00]
Q.No.25: In the given circuit, the value of current I_L will be mA. (When $R_L = 1 \text{ k}\Omega$)
$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & \\ \hline & & & \\ \hline & & & \\ \hline &$
Q.No.26: A sample contains 10^{-2} kg each of two substances A and B with half lives 4 s and 8 s respectively. The ratio of their atomic weights is 1 : 2. The ratio of the amounts of A and B after 16 s is $\frac{x}{100}$. The value of x is
Marks:[0.00]
Q.No.27: A ray of light is incident at an angle of incidence 60° on the glass slab of refractive index $\sqrt{3}$. After refraction, the light ray emerges out from other parallel faces and lateral shift between incident ray and emergent ray is $4\sqrt{3}$ cm. The thickness of the glass slab is cm. Marks:[0.00]
Q.No.28: A circular coil of 1000 turns each with area 1 m ² is rotated about its vertical diameter at the rate of one revolution per second in a uniform horizontal magnetic field of 0.07 T. The maximum voltage generation will be

Q.No.29: A monoatomic gas performs a work of $\frac{Q}{4}$ where Q is the heat supplied to it. The molar heat capacity of the gas will be _____ R during this transformation.

Where *R* is the gas constant. Marks:[0.00]

Q.No.30: In an experiment to verify Newton's law of cooling, a graph is plotted between, the temperature difference (ΔT) of the water and surroundings and time as shown in figure. The initial temperature of water is taken as 80°C. The value of t_2 as mentioned in the graph will be

ΔT(°C)
60
40
20

Time (minute)

Marks:[0.00]

Chemistry

Q.No.31: 120 g of an organic compound that contains only carbon and hydrogen gives 330 g of CO₂ and 270 g of water on complete combustion. The percentage of carbon and hydrogen, respectively are

- **A.** 25 and 75
- **B.** 40 and 60
- **C.** 60 and 40
- **D.** 75 and 25

Marks:[4.00]

Q.No.32: The energy of one mole of photons of radiation of wavelength 300 nm is (Given $h = 6.63 \times 10^{-34} \text{Js}$, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$, $c = 3 \times 10^8 \text{ ms}^{-1}$)

- **A.** 235 kJ mol⁻¹
- **B.** 325 kJ mol⁻¹
- **C.** 399 kJ mol⁻¹
- **D.** 435 kJ mol⁻¹

Q.No.33: The correct order of bond orders of $C_2^{2-},\ N_2^{2-},\ O_2^{2-}$ is, respectively

A.
$$C_2^{2-} < N_2^{2-} < O_2^{2-}$$

B.
$$m O_2^{2-} < N_2^{2-} < C_2^{2-}$$

C.
$$m C_2^{2-} <
m O_2^{2-} <
m N_2^{2-}$$

$$m ar N_2^{2-} < C_2^{2-} < O_2^{2-}$$

Marks:[4.00]

Q.No.34: At 25°C and 1 atm pressure, the enthalpies of combustion are as given below :

Substance	H ₂	C(graphite)	C ₂ H6(g)
$rac{D_C H^{\odot}}{ ext{kJmol}^{-1}}$	-286.0	-394.0	-1560.0

The enthalpy of formation of ethane is

A.
$$+54.0 \text{ kJ mol}^{-1}$$

c.
$$|_{-86.0 \text{ kJ mol}^{-1}}$$

D.
$$+97.0 \text{ kJ mol}^{-1}$$

Marks:[4.00]

Q.No.35: For a first order reaction, the time required for completion of 90% reaction is 'x' times the half life of the reaction. The value of 'x' is (Given: In 10 = 2.303 and $\log 2 = 0.3010$)

A.	1.12
B.	2.43
C.	3.32
D.	33.31

Marks:[4.00]

Q.No.36: Metals generally melt at very high temperature. Amongst the following, the metal with the highest melting point will be

		<u>J</u>	
Α.	Hg		
B.	Ag		
C.	Ga		
D.	Cs		

Q.No.37: Which	of the following	chemical	reactions	represents	Hall-Heroult
Process?					

A.
$$Cr_2O_3 + 2AI \rightarrow AI2O_3 + 2Cr$$

B.
$$2A12O_3 + 3C \rightarrow 4A1 + 3CO_2$$

C. FeO + CO
$$\rightarrow$$
 Fe + CO₂

$$oxed{oxed{ ext{D.}} egin{aligned} \left[2\,\mathrm{Au}\left(\mathrm{CN}
ight)_{2}
ight]_{\mathrm{(aq)}}^{-} + \mathrm{Zn}\left(\mathrm{s}
ight)
ightarrow 2\,\mathrm{Au}\left(\mathrm{s}
ight) + \left[\mathrm{Zn}\left(\mathrm{CN}_{4}
ight)
ight]^{2-} \end{aligned}}$$

Q.No.38: In the industrial production of which of the following, molecular hydrogen is obtained as a byproduct?

- A. NaOH
- **B.** NaCl
- C. Na metal
- **D.** Na_2CO_3

Marks:[4.00]

Q.No.39: Which one of the following compounds is used as a chemical in certain type of fire extinguishers?

- A. Baking soda
- **B.** Soda ash
- C. Washing soda
- **D.** Caustic Soda

Marks:[4.00]

Q.No.40: PCI₅ is well known, but NCI₅ is not. Because,

- A. nitrogen is less reactive than phosphorous
- **B.** nitrogen doesn't have *d*-orbitals in its valence shell.
- **C.** catenation tendency is weaker in nitrogen than phosphorous.
- **D.** size of phosphorous is larger than nitrogen

Marks:[4.00]

Q.No.41: Transition metal complex with highest value of crystal field splitting (Δ_0) will be

- **A.** $[Cr(H_2O)_6]^{3+}$
- **B.** $[Mo(H_2O)_6]^{3+}$
- **C.** [Fe(H₂O)₆]³⁺

D. $[Os(H_2O)_6]^{3+}$

Marks:[4.00]

Q.No.42: Some gases are responsible for heating of atmosphere (green house effect). Identify from the following the gaseous species which does not cause it.

Α.	CH ₄
В.	O ₃
C.	H ₂ O
D.	N_2

Marks:[4.00]

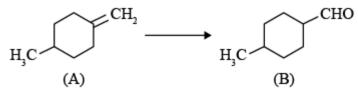
Q.No.43: Arrange the following carbocations in decreasing order of stability.

- $A. \quad A > C > B$
- $\mathbf{B.} \quad \mathsf{A} > \mathsf{B} > \mathsf{C}$
- **C.** C > B > A
- **D.** C > A > B

Marks:[4.00]

Q.No.44: Given below are two statements.

Statement I: The presence of weaker π -bonds make alkenes less stable than alkanes.


Statement II: The strength of the double bond is greater than that of carbon-carbon single bond.

In the light of the above statements, choose the *correct* answer from the options given below.

- **A.** Both Statement I and Statement II are correct.
- **B.** Both Statement I and Statement II are incorrect.
- **C.** Statement I is correct but Statement II is incorrect.
- **D.** Statement I is incorrect but Statement II is correct.

Marks:[4.00]

Q.No.45: Which of the following reagents/reactions will convert 'A' to 'B'?

- **A.** PCC oxidation
- **B.** Ozonolysis
- **C.** BH_3 , H_2O_2 /OH followed by PCC oxidation
- **D.** HBr, hydrolysis followed by oxidation by $K_2Cr_2O_7$.

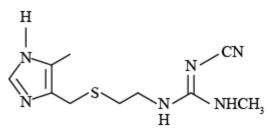
Q.No.46: Hex-4-ene-2-ol on treatment with PCC gives 'A' on reaction with sodium hypoiodite gives 'B', which on further heating with soda lime gives 'C'. The compound 'C' is

- A. 2-pentene
- **B.** Proponaldehyde
- C. 2-butene
- **D.** 4-methylpent-2-ene

Marks:[4.00]

Q.No.47: The conversion of propan-1-ol to n-butylamine involves the sequential addition of reagents. The correct sequential order of reagents is

- **A.** (i) SOCl₂ (ii) KCN (iii) H₂/Ni, Na(Hg)/C₂H₅OH
- **B.** (i) HCl (ii) H₂/Ni, Na(Hg)/C₂H₅OH
- C. (i) SOCl₂ (ii) KCN (iii) CH₃NH₂
- **D.** (i) HCl (ii) CH₃NH₂


Marks:[4.00]

Q.No.48: Which of the following is not an example of a condensation polymer?

- **A.** Nylon 6,6
- **B.** Dacron
- C. Buna-N
- **D.** Silicone

Marks:[4.00]

Q.No.49: The structure shown below is of which well-known drug molecule?

A.	Ranitidine					
B.	Seldane					
C.	Cimetidine					
D.	Codeine					

Q.No.50: In the flame test of a mixture of salts, a green flame with blue centre was observed. Which one of the following cations may be present?

A.	Cu ²⁺	
В.		
C.	Ba ²⁺	
D.	Ca ²⁺	

Marks:[4.00]

Q.No.51: At 300 K, a sample of 3.0 g of gas A occupies the same volume as 0.2 g of hydrogen at 200 K at the same pressure. The molar mass of gas A is $g \text{ mol}^{-1}$. (nearest integer) Assume that the behaviour of gases as ideal. (Given: The molar mass of hydrogen (H₂) gas is 2.0 g mol⁻¹). **Marks:[4.00]**

Q.No.52: A company dissolves 'x' amount of CO_2 at 298 K in 1 litre of water to prepare soda water. $X = ___ \times 10^{-3}$ g. (nearest integer) (Given: partial pressure of CO_2 at 298 K = 0.835 bar. Henry's law constant for CO_2 at 298 K = 1.67 kbar. Atomic mass of H, C and O is 1, 12, and 6 g mol⁻¹, respectively) **Marks:[4.00]**

Q.No.53: PCl_5 dissociates as $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ 5 moles of PCl_5 are placed in a 200 litre vessel which contains 2 mole and is maintained at 600 K. The equilibrium pressure is 2.46 atm. The second of the s	he
equilibrium constant K_p for the dissociation of PCl_5 is \times 10 ⁻³ integer) (Given: R = 0.082 L atm K ⁻¹ mol ⁻¹ ; Assume ideal gas behaviour)	arks:[4.00]
Q.No.54: The resistance of a conductivity cell containing 0.01 M KC 298 K is 1750 Ω . If the conductivity of 0.01 M KCl solution at 298 K 10^{-3} S cm ⁻¹ , then the cell constant of the conductivity cell is Ma	is 0.152 ×
Q.No.55: 5. When 200 mL of 0.2 M acetic acid is shaken with 0.6 g charcoal, the final concentration of acetic acid after adsorption is 0.1 mass of acetic acid adsorbed per gram of carbon isg. Ma	1 M. The
Q.No.56: (a) Baryte, (b) Galena, (c) Zinc blende and (d) Copper py many of these minerals are sulphide based? Ma	rites. How arks:[0.00]
Q.No.57: Manganese (VI) has ability to disproportionate in acidic so difference in oxidation states of two ions it forms in acidic solution is Ma	olution. The arks:[0.00]
Q.No.58: 0.2 g of an organic compound was subjected to estimation nitrogen by Duma's method in which volume of N_2 evolved (at STP) to be 22.400 mL. The percentage of nitrogen in the compound is [nearest integer]	was found
(Given : Molar mass of N_2 is 28 g mol ⁻¹ , Molar volume of N_2 at STP M_2	: 22.4L) arks:[0.00]

Consider the above reaction. The number of π electrons present in the product 'P' is_____.

Marks:[0.00]

Q.No.60: In alanylglycylleucylalanyvaline, the number of peptide linkages is ., Marks:[0.00]

Mathematics

Q.No.61: Let $x * y = x^2 + y^3$ and (x * 1) * 1 = x * (1 * 1). Then a value of $2\sin^{-1}\left(\frac{x^4+x^2-2}{x^4+x^2+2}\right)$ is

- A.
- **B.** $\frac{\pi}{3}$
- $\frac{\pi}{2}$
- **D.** $\frac{\pi}{6}$

Marks:[4.00]

Q.No.62: The sum of all the real roots of the equation $(e^{2x} - 4)(6e^{2x} - 5e^x + 1) = 0$ is

Α.	log _e 3			
B.	-log _e 3	<i>y</i>		
C.	log _e 6			

D. -log_e6

Marks:[4.00]

Q.No.63: Let the system of linear equations

$$x + y + az = 2$$

$$3x + y + z = 4$$

$$x + 2z = 1$$

have a unique solution (x^*, y^*, z^*) . If (a, x^*) , (y^*, a) and $(x^*, -y^*)$ are collinear points, then the sum of absolute values of all possible values of a is

A.	4
B.	3

C.	2
D.	1

Q.No.64: Let x, y > 0. If $x^3y^2 = 2^{15}$, then the least value of 3x + 2y is

A.	30
B.	32
C.	36
D.	40

Marks:[4.00]

Q.No.65: Let
$$f(x)=\left\{egin{array}{ll} rac{\sin(x-[x])}{x-[x]},&x\in(-2,-1)\ \max\left\{2x,\ 3\left[|x|
ight]
ight\},&|x|<1\ 1,& ext{otherwise} \end{array}
ight.$$

Where [t] denotes greatest integer $\leq t$. If m is the number of points where f is not continuous and n is the number of points where f is not differentiable, then the ordered pair (m, n) is

A. (3, 3)

B. (2, 4)

C. (2, 3)

D. (3, 4)

Marks:[4.00]

Q.No.66: The value of the integral $\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{(1+e^x)\left(\sin^6x+\cos^6x\right)}$ is equal to

A.	2п	
B.		0
C.		п
D.	$\frac{\pi}{2}$	

Marks:[4.00]

Q.No.67:
$$\lim_{n \to \infty} \left(\frac{n^2}{(n^2+1)(n+1)} + \frac{n^2}{(n^2+4)(n+2)} + \frac{n^2}{(n^2+9)(n+3)} + \dots + \frac{n^2}{(n^2+n^2)(n+n)} \right)$$

is equal to

A.
$$\left\| \frac{\pi}{8} + \frac{1}{4} \log_e 2 \right\|$$

B. $\left\ \frac{\pi}{4} + \frac{1}{8} \log_e 2 \right\ $	
C. $\left\ rac{\pi}{4} - rac{1}{8} \log_e 2 ight.$	
D. $\left\ rac{\pi}{8} + rac{1}{8} \log_e \sqrt{2} ight.$	

Q.No.68: A particle is moving in the xy-plane along a curve C passing through the point (3, 3). The tangent to the curve C at the point P meets the x-axis at Q. If the y-axis bisects the segment PQ, then C is a parabola with

A. Length of latus rectum 3	
B. Length of latus rectum 6	
Focus $\left(\frac{4}{3}, 0\right)$	
Focus $\left(0, \frac{3}{4}\right)$	

Marks:[4.00]

Q.No.69: Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^2}{a^2}+\frac{y^2}{4}=1,\ a>2,$ having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the *y*-axis, be $6\sqrt{3}$. Then the eccentricity of the ellipse is

```
      A.
      \frac{\sqrt{3}}{2}

      B.
      \frac{1}{2}

      C.
      \frac{1}{\sqrt{2}}

      D.
      \frac{\sqrt{3}}{4}
```

Marks:[4.00]

Q.No.70: Let the area of the triangle with vertices $A(1, \alpha)$, $B(\alpha, 0)$ and $C(0, \alpha)$ be 4 sq. units. If the points $(\alpha, -\alpha)$, $(-\alpha, \alpha)$ and (α^2, β) are collinear, then β is equal to

A.	64
B.	-8
C.	-64
D.	512

Q.No.71: The number of distinct real roots of the equation $x^7 - 7x - 2 = 0$ is

_	· ·
A.	5
B.	7
C.	1
D.	3

Marks:[4.00]

Q.No.72: A random variable X has the following probability distribution:

X	0	1	2	3	4
P(X)	k	2 <i>k</i>	4 <i>k</i>	6 <i>k</i>	8 <i>k</i>

The value of $P(1 < X < 4 | X \le 2)$ is equal to

THE Vale		= 2) 15 Equal to
A.	$\frac{4}{7}$	
В.	$\frac{2}{3}$	
C.	$\frac{3}{7}$	
D.	$\frac{4}{5}$	4 9

Marks:[4.00]

Q.No.73: The number of solutions of the equation

 $\cos\left(x+rac{\pi}{3}
ight)\cos\left(rac{\pi}{3}-x
ight)=rac{1}{4}\cos^22x,\ x\in[-3\pi,\ 3\pi]$ is:

A.	8
B.	5
C.	6
D.	7

Marks:[4.00]

Q.No.74: If the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{\lambda}$ and $\frac{x-2}{1} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{3}}$, then the sum of all possible values of λ is:

A.	16	
B.		6
C.	12	
D.	15	

Q.No.75: Let the points on the plane P be equidistant from the points (-4, 2, 1) and (2, -2, 3). Then the acute angle between the plane P and the plane 2x + y + 3z = 1 is

A.	$\frac{\pi}{6}$
B.	$\left rac{\pi}{4} ight $
C.	$\left \frac{\pi}{3} \right $
$\mathbf{D.} \qquad \frac{5}{1}$	$\frac{6\pi}{12}$

Marks:[4.00]

Q.No.76: Let \widehat{a} and \widehat{b} be two unit vectors such that $\left|\left(\widehat{a}+\widehat{b}\right)+2\left(\widehat{a}\times\widehat{b}\right)\right|=2$. If $\theta\in(0,\pi)$ is the angle between \widehat{a} and \widehat{b} , then among the statements:

(S1) :
$$2\left|\widehat{a} imes\widehat{b}\right| = \left|\widehat{a}-\widehat{b}\right|$$

(S2) : The projection of \widehat{a} on $\left(\widehat{a}+\widehat{b}\right)$ is $\frac{1}{2}$

- A. Only (S1) is true
- **B.** Only (S2) is true
- C. Both (S1) and (S2) are true
- **D.** Both (S1) and (S2) are false

Marks:[4.00]

Q.No.77: If $y = \tan^{-1} \left(\sec x^3 - \tan x^3 \right), \frac{\pi}{2} < x^3 < \frac{3\pi}{2},$ then

A.
$$xy'' + 2y' = 0$$

B.
$$x^2y'' - 6y + \frac{3\pi}{2} = 0$$

C.
$$x^2y'' - 6y + 3\pi = 0$$

D.
$$|xy'' - 4y' = 0$$

Marks:[4.00]

Q.No.78: Consider the following statements:

A: Rishi is a judge.

B: Rishi is honest.

C: Rishi is not arrogant.

The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is

A.
$$B \rightarrow (A \lor C)$$

B.
$$(\sim B) \wedge (A \wedge C)$$

$$C. \quad B \to ((\sim A) \lor (\sim C))$$

D.
$$B \rightarrow (A \land C)$$

Q.No.79: The slope of normal at any point (x, y), x > 0, y > 0 on the curve y = y(x) is given by $\frac{x^2}{xy - x^2y^2 - 1}$. If the curve passes through the point (1, 1), then $e \cdot v(e)$ is equal to

- /(-	(-)	
A.	$1-\tan(1)$	
	1+ an(1)	
В.	tan(1)	
C.	1	-02
D.	$1+\tan(1)$	
	$\frac{1+\tan(1)}{1-\tan(1)}$	

Marks:[4.00]

Q.No.80: Let λ^* be the largest value of λ for which the function $f_{\lambda}(x) = 4\lambda x^3 - 36\lambda x^2 + 36x + 48$ is increasing for all $x \in \mathbb{R}$. Then f_{λ}^* (1) + f_{λ}^* (-1) is equal to

A. 36
B. 48
C. 64
D. 72

Marks:[4.00]

Q.No.81: Let $S=\{z\in\mathbb{C}:|z-3|\leq 1 \text{ and } z(4+3i)+\bar{z}\ (4-3i)\leq 24\}.$ If a $+i\beta$ is the point in S which is closest to 4i, then $25(a+\beta)$ is equal to _____. Marks:[4.00]

Q.No.82: Let
$$S=\left\{\begin{pmatrix} -1 & a \\ 0 & b \end{pmatrix};\ a,\ b\in\{1,\ 2,\ 3,\ \dots,\ 100\}\right\}$$
 and let $T_n=\{A\}$

 $\in S: A^{n(n+1)}=I \}.$ Then the number of elements in \cap T_n is _____. n=1

Q.No.83: The number of 7-digit numbers which are multiples of 11 and are formed using all the digits 1, 2, 3, 4, 5, 7 and 9 is _____. **Marks:[4.00]**

Q.No.84: The sum of all the elements of the set $\{a \in \{1, 2, ..., 100\} : HCF(a, 24) = 1\}$ is Marks:[4.00]

Q.No.85: The remainder on dividing $1 + 3 + 3^2 + 3^3 + ... + 3^{2021}$ by 50 _____ is _______

Q.No.86: The area (in sq. units) of the region enclosed between the parabola $y^2 = 2x$ and the line x + y = 4 is _____. Marks:[0.00]

Q.No.87: Let a circle $C: (x-h)^2 + (y-k)^2 = r^2$, k > 0, touch the x-axis at (1, 0). If the line x + y = 0 intersects the circle C at P and Q such that the length of the chord PQ is 2, then the value of h + k + r is equal to ____. Marks:[0.00]

Q.No.88: In an examination, there are 10 true-false type questions. Out of 10, a student can guess the answer of 4 questions correctly with probability $\frac{3}{4}$ and the remaining 6 questions correctly with probability $\frac{1}{4}$. If the probability that the student guesses the answers of exactly 8 questions correctly out of 10 is $\frac{27k}{4^{10}}$, then k is equal to **Marks:[0.00]**

Q.No.89: Let the hyperbola $H: \frac{x^2}{a^2} - y^2 = 1$ and the ellipse $E: 3x^2 + 4y^2 = 12$ be such that the length of latus rectum of H is equal to the length of latus rectum of E. If e_H and e_E are the eccentricities of H and E respectively, then the value of $12\left(e_H^2 + e_E^2\right)$ is equal to ____. **Marks:[0.00]**

Q.No.90: Let P_1 be a parabola with vertex (3, 2) and focus (4, 4) and P_2 be its mirror image with respect to the line x + 2y = 6. Then the directrix of P_2 is x + 2y = 6.

